鄂尔多斯盆地太原组富焦油煤高压热解机理

IF 9.4 1区 工程技术 Q1 ENERGY & FUELS
Han Tian , Wei Guo , Qiang Li , Sunhua Deng , Fengtian Bai , Yanwei Li , Yijian Zeng , Chaofan Zhu
{"title":"鄂尔多斯盆地太原组富焦油煤高压热解机理","authors":"Han Tian ,&nbsp;Wei Guo ,&nbsp;Qiang Li ,&nbsp;Sunhua Deng ,&nbsp;Fengtian Bai ,&nbsp;Yanwei Li ,&nbsp;Yijian Zeng ,&nbsp;Chaofan Zhu","doi":"10.1016/j.energy.2025.138675","DOIUrl":null,"url":null,"abstract":"<div><div>Poor fluidity and difficult extraction of coal tar pose critical challenges for in-situ tar-rich coal development. However, the influence of temperature-pressure variations on pyrolysis products remains unclear. This study explores pressure's dual regulatory mechanisms on pyrolysis kinetics and product distribution via pressurized thermogravimetric and pyrolysis experiments. Thermogravimetric analysis shows 24.1 % thermal weight loss at atmospheric pressure; at 8 MPa, this decreases by 6.97 %, with decomposition activation energy increasing by 20.9 % due to enhanced organic matter interactions promoting small-molecule and coke formation. At 8 MPa, 500–700 °C condensation converts high-viscosity heavy tar to lighter tar and residual carbon. Coal tar analysis reveals pressure boosts light hydrocarbons (max. 61.6 %). High-pressure environments promote the cleavage of macromolecular Cal-Cal and Car-CH<sub>3</sub> bonds, thereby facilitating the generation of CH<sub>4</sub>: 550 °C/8 MPa yields 33.45 % CH<sub>4</sub> (five times atmospheric), favoring methane-rich syngas. At 550 °C, kerogen fully cracks, with residues (TOC &gt;40 %) providing energy via oxidation-coupled exothermic reactions. This work demonstrates improved tar fluidity, supporting optimized in-situ conversion sweet spot theory.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"337 ","pages":"Article 138675"},"PeriodicalIF":9.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-pressure pyrolysis mechanism of tar-rich coal in Taiyuan Formation, Ordos Basin\",\"authors\":\"Han Tian ,&nbsp;Wei Guo ,&nbsp;Qiang Li ,&nbsp;Sunhua Deng ,&nbsp;Fengtian Bai ,&nbsp;Yanwei Li ,&nbsp;Yijian Zeng ,&nbsp;Chaofan Zhu\",\"doi\":\"10.1016/j.energy.2025.138675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poor fluidity and difficult extraction of coal tar pose critical challenges for in-situ tar-rich coal development. However, the influence of temperature-pressure variations on pyrolysis products remains unclear. This study explores pressure's dual regulatory mechanisms on pyrolysis kinetics and product distribution via pressurized thermogravimetric and pyrolysis experiments. Thermogravimetric analysis shows 24.1 % thermal weight loss at atmospheric pressure; at 8 MPa, this decreases by 6.97 %, with decomposition activation energy increasing by 20.9 % due to enhanced organic matter interactions promoting small-molecule and coke formation. At 8 MPa, 500–700 °C condensation converts high-viscosity heavy tar to lighter tar and residual carbon. Coal tar analysis reveals pressure boosts light hydrocarbons (max. 61.6 %). High-pressure environments promote the cleavage of macromolecular Cal-Cal and Car-CH<sub>3</sub> bonds, thereby facilitating the generation of CH<sub>4</sub>: 550 °C/8 MPa yields 33.45 % CH<sub>4</sub> (five times atmospheric), favoring methane-rich syngas. At 550 °C, kerogen fully cracks, with residues (TOC &gt;40 %) providing energy via oxidation-coupled exothermic reactions. This work demonstrates improved tar fluidity, supporting optimized in-situ conversion sweet spot theory.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"337 \",\"pages\":\"Article 138675\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225043178\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225043178","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

煤焦油流动性差、提取困难是就地富焦油煤开发面临的严峻挑战。然而,温度压力变化对热解产物的影响尚不清楚。本研究通过加压热重和热解实验,探讨了压力对热解动力学和产物分布的双重调节机制。热重分析表明,在常压下热重损失24.1%;在8 MPa时,分解活化能降低了6.97%,分解活化能提高了20.9%,这是由于有机质相互作用增强,促进了小分子和焦炭的形成。在8兆帕时,500-700°C的冷凝将高粘度重焦油转化为较轻的焦油和残余碳。煤焦油分析显示,压力增加了轻质碳氢化合物(最大。61.6%)。高压环境促进大分子Cal-Cal和Car-CH3键的断裂,从而促进CH4的生成:550℃/8 MPa产率为33.45%(5倍于大气),有利于富甲烷合成气的生成。在550°C时,干酪根完全开裂,残留物(TOC > 40%)通过氧化耦合放热反应提供能量。这项工作证明了改善的焦油流动性,支持优化的原位转化甜点理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-pressure pyrolysis mechanism of tar-rich coal in Taiyuan Formation, Ordos Basin
Poor fluidity and difficult extraction of coal tar pose critical challenges for in-situ tar-rich coal development. However, the influence of temperature-pressure variations on pyrolysis products remains unclear. This study explores pressure's dual regulatory mechanisms on pyrolysis kinetics and product distribution via pressurized thermogravimetric and pyrolysis experiments. Thermogravimetric analysis shows 24.1 % thermal weight loss at atmospheric pressure; at 8 MPa, this decreases by 6.97 %, with decomposition activation energy increasing by 20.9 % due to enhanced organic matter interactions promoting small-molecule and coke formation. At 8 MPa, 500–700 °C condensation converts high-viscosity heavy tar to lighter tar and residual carbon. Coal tar analysis reveals pressure boosts light hydrocarbons (max. 61.6 %). High-pressure environments promote the cleavage of macromolecular Cal-Cal and Car-CH3 bonds, thereby facilitating the generation of CH4: 550 °C/8 MPa yields 33.45 % CH4 (five times atmospheric), favoring methane-rich syngas. At 550 °C, kerogen fully cracks, with residues (TOC >40 %) providing energy via oxidation-coupled exothermic reactions. This work demonstrates improved tar fluidity, supporting optimized in-situ conversion sweet spot theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信