{"title":"有限群的奇异Cayley图与p块","authors":"Mahdi Ebrahimi","doi":"10.1016/j.jalgebra.2025.08.038","DOIUrl":null,"url":null,"abstract":"<div><div>For a simple finite graph Γ, the multiplicity of the eigenvalue 0 of the adjacency matrix of Γ is called the nullity of Γ. The energy of Γ is defined as the sum of the absolute values of its eigenvalues. In this paper, we apply the block theory of finite groups to study the Cayley graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> defined on a finite group <em>G</em> in which its connecting set consists of <em>p</em>-singular elements of <em>G</em>. We use this Cayley graph to investigate several methods for constructing singular graphs. Then we assume that <em>G</em> is <em>p</em>-solvable and obtain some nice restrictions on the structure of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We first achieve an explicit formula for the nullity of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In addition, we find a lower bound for the energy of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Finally, we prove that the diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is at most <span><math><mo>|</mo><mi>G</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 477-491"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Cayley graphs and p-blocks of finite groups\",\"authors\":\"Mahdi Ebrahimi\",\"doi\":\"10.1016/j.jalgebra.2025.08.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a simple finite graph Γ, the multiplicity of the eigenvalue 0 of the adjacency matrix of Γ is called the nullity of Γ. The energy of Γ is defined as the sum of the absolute values of its eigenvalues. In this paper, we apply the block theory of finite groups to study the Cayley graph <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> defined on a finite group <em>G</em> in which its connecting set consists of <em>p</em>-singular elements of <em>G</em>. We use this Cayley graph to investigate several methods for constructing singular graphs. Then we assume that <em>G</em> is <em>p</em>-solvable and obtain some nice restrictions on the structure of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We first achieve an explicit formula for the nullity of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In addition, we find a lower bound for the energy of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Finally, we prove that the diameter of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is at most <span><math><mo>|</mo><mi>G</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 477-491\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005241\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular Cayley graphs and p-blocks of finite groups
For a simple finite graph Γ, the multiplicity of the eigenvalue 0 of the adjacency matrix of Γ is called the nullity of Γ. The energy of Γ is defined as the sum of the absolute values of its eigenvalues. In this paper, we apply the block theory of finite groups to study the Cayley graph defined on a finite group G in which its connecting set consists of p-singular elements of G. We use this Cayley graph to investigate several methods for constructing singular graphs. Then we assume that G is p-solvable and obtain some nice restrictions on the structure of . We first achieve an explicit formula for the nullity of . In addition, we find a lower bound for the energy of . Finally, we prove that the diameter of is at most .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.