{"title":"量子超对称(I):量子Grassmann超代数和量子delign - morgan - manin de Rham复合体","authors":"Ge Feng , Naihong Hu , Marc Rosso","doi":"10.1016/j.jalgebra.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the quantum Manin <span><math><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span>-superspace <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>|</mo><mi>n</mi></mrow></msubsup></math></span> equipped with a super ⋆-product, and dually, the quantum Grassmann super-algebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span> equipped with the quantum divided power super-structure. The quantum (restricted) Grassmann superalgebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and its Manin dual <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>!</mo></mrow></msubsup></math></span> are made into <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-module superalgebras, either for <em>q</em> generic, or for <em>q</em> root of unity, via quantum (super) differential operators. We give an explicit realization model for certain simple <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-modules and their dimension-formulae, and construct a quantum super de Rham cochain complex of infinite length, which is a quantized version of a classical analogue due to Manin, Deligne-Morgan in the framework of super-symmetry on supermanifolds in gauge field theory.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 492-531"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum super-symmetries (I): Quantum Grassmann super-algebras and a quantum Deligne-Morgan-Manin de Rham complex\",\"authors\":\"Ge Feng , Naihong Hu , Marc Rosso\",\"doi\":\"10.1016/j.jalgebra.2025.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the quantum Manin <span><math><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span>-superspace <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>|</mo><mi>n</mi></mrow></msubsup></math></span> equipped with a super ⋆-product, and dually, the quantum Grassmann super-algebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span> equipped with the quantum divided power super-structure. The quantum (restricted) Grassmann superalgebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and its Manin dual <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>!</mo></mrow></msubsup></math></span> are made into <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-module superalgebras, either for <em>q</em> generic, or for <em>q</em> root of unity, via quantum (super) differential operators. We give an explicit realization model for certain simple <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-modules and their dimension-formulae, and construct a quantum super de Rham cochain complex of infinite length, which is a quantized version of a classical analogue due to Manin, Deligne-Morgan in the framework of super-symmetry on supermanifolds in gauge field theory.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 492-531\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005344\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005344","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantum super-symmetries (I): Quantum Grassmann super-algebras and a quantum Deligne-Morgan-Manin de Rham complex
We introduce the quantum Manin -superspace equipped with a super ⋆-product, and dually, the quantum Grassmann super-algebra equipped with the quantum divided power super-structure. The quantum (restricted) Grassmann superalgebra and its Manin dual are made into -module superalgebras, either for q generic, or for q root of unity, via quantum (super) differential operators. We give an explicit realization model for certain simple -modules and their dimension-formulae, and construct a quantum super de Rham cochain complex of infinite length, which is a quantized version of a classical analogue due to Manin, Deligne-Morgan in the framework of super-symmetry on supermanifolds in gauge field theory.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.