从Weyl组的阶级到阶层

IF 0.8 2区 数学 Q2 MATHEMATICS
G. Lusztig
{"title":"从Weyl组的阶级到阶层","authors":"G. Lusztig","doi":"10.1016/j.jalgebra.2025.08.036","DOIUrl":null,"url":null,"abstract":"<div><div>In a 2015 paper we have defined a map from the set of conjugacy classes in the Weyl group W to the set of irreducible representations of W (its image parametrizes the set of strata of a reductive group with Weyl group W). In this paper we provide evidence that this map makes sense even when W is replaced by a noncrystallographic finite Coxeter group.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 655-672"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From classes in the Weyl group to strata\",\"authors\":\"G. Lusztig\",\"doi\":\"10.1016/j.jalgebra.2025.08.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In a 2015 paper we have defined a map from the set of conjugacy classes in the Weyl group W to the set of irreducible representations of W (its image parametrizes the set of strata of a reductive group with Weyl group W). In this paper we provide evidence that this map makes sense even when W is replaced by a noncrystallographic finite Coxeter group.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"687 \",\"pages\":\"Pages 655-672\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005228\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005228","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在2015年的一篇论文中,我们定义了一个映射,从Weyl群W中的共轭类集到W的不可约表示集(它的图像参数化了Weyl群W的约简群的层集)。在本文中,我们提供的证据表明,即使W被一个非晶体的有限Coxeter群取代,这个映射也是有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From classes in the Weyl group to strata
In a 2015 paper we have defined a map from the set of conjugacy classes in the Weyl group W to the set of irreducible representations of W (its image parametrizes the set of strata of a reductive group with Weyl group W). In this paper we provide evidence that this map makes sense even when W is replaced by a noncrystallographic finite Coxeter group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信