处理随机前沿模型的内生性:估计量的比较评估

IF 14.2 2区 经济学 Q1 ECONOMICS
Zheng Hou , Joaquim J.S. Ramalho , Catarina Roseta-Palma
{"title":"处理随机前沿模型的内生性:估计量的比较评估","authors":"Zheng Hou ,&nbsp;Joaquim J.S. Ramalho ,&nbsp;Catarina Roseta-Palma","doi":"10.1016/j.eneco.2025.108922","DOIUrl":null,"url":null,"abstract":"<div><div>Endogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan, 2022). Monte Carlo simulations reveal distinct bias–variance trade-offs: likelihood-based estimators provide more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite data limitations, the study underscores the importance of treating endogeneity and provides methodological guidance for applied efficiency analysis.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"151 ","pages":"Article 108922"},"PeriodicalIF":14.2000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dealing with endogeneity in stochastic frontier models: A comparative assessment of estimators\",\"authors\":\"Zheng Hou ,&nbsp;Joaquim J.S. Ramalho ,&nbsp;Catarina Roseta-Palma\",\"doi\":\"10.1016/j.eneco.2025.108922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan, 2022). Monte Carlo simulations reveal distinct bias–variance trade-offs: likelihood-based estimators provide more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite data limitations, the study underscores the importance of treating endogeneity and provides methodological guidance for applied efficiency analysis.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"151 \",\"pages\":\"Article 108922\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988325007492\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988325007492","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

内生性对随机前沿分析提出了主要的挑战,因为输入选择可能是内生的误差项的未观察到的成分,导致有偏的效率估计。本文比较了解决这一问题的主要估计器,包括控制函数估计器(Kutlu, 2010),广义矩法(GMM) (Tran和Tsionas, 2013)和copula (Tran和Tsionas, 2015)方法,以及基于工具变量的最大似然估计器(Karakaplan和Kutlu, 2017a,b; Karakaplan, 2022)。蒙特卡罗模拟揭示了不同的偏差-方差权衡:基于似然的估计器提供更精确的效率分数,而GMM和copula在特定环境中可能更有利。对葡萄牙火电分部门(2006-2021)的经验应用表明,考虑内生性显著改变了系数和效率分布。这些结果表明,估算者的选择影响政策相关指标,如效率得分和成本绩效的决定因素。尽管数据有限,但该研究强调了处理内生性的重要性,并为应用效率分析提供了方法学指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dealing with endogeneity in stochastic frontier models: A comparative assessment of estimators
Endogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan, 2022). Monte Carlo simulations reveal distinct bias–variance trade-offs: likelihood-based estimators provide more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite data limitations, the study underscores the importance of treating endogeneity and provides methodological guidance for applied efficiency analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Economics
Energy Economics ECONOMICS-
CiteScore
18.60
自引率
12.50%
发文量
524
期刊介绍: Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信