有机和钙钛矿太阳能电池中烷基硅基苯二噻吩基空穴传输材料的量子设计

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Mahneema Murtaza , Umar Mukhtar , Nabeeha Gul , Meznah M. Alanazi , Saleem Iqbal , Javed Iqbal
{"title":"有机和钙钛矿太阳能电池中烷基硅基苯二噻吩基空穴传输材料的量子设计","authors":"Mahneema Murtaza ,&nbsp;Umar Mukhtar ,&nbsp;Nabeeha Gul ,&nbsp;Meznah M. Alanazi ,&nbsp;Saleem Iqbal ,&nbsp;Javed Iqbal","doi":"10.1016/j.solener.2025.114005","DOIUrl":null,"url":null,"abstract":"<div><div>Rational discovery of hole‐transport materials (HTMs) for OSCs/PSCs benefits from prescreening that links molecular structure to energy alignment and intrinsic transport before synthesis. This study reports a computational prescreening of five benzodithiophene (BDT)-based HTMs, BDTP1–BDTP5, obtained by bridging-unit engineering of a reported BDTP scaffold for viable photovoltaics. Comprehensive molecular characterization of the designed HTMs was achieved through DFT/TD-DFT simulations to investigate their structural, electronic, photophysical, and charge transport properties. Computational results show that the molecular design strategy tunes highest occupied molecular orbitals (HOMO) from –5.953 to –5.430 eV and lowest unoccupied molecular orbitals (LUMO) from –3.740 to –3.081 eV, maintaining LUMOs well above typical perovskite conduction band maxima and enabling HOMO placement relative to representative valence band maxima by acceptor choice. Band gaps follow BDTP5 (1.69 eV) &lt; BDTP4 (1.89 eV) &lt; BDTP1 (2.17 eV) &lt; BDTP2 (2.35 eV) &lt; BDTP (2.45 eV) &lt; BDTP3 (2.52 eV). In chloroform solvent, BDTP4/BDTP5 exhibit strong, red-shifted bands absorption maxima at 824/899 nm and reduced lower exciton binding energy (0.4207/0.3282 eV), consistent with backbone-spanning HOMO delocalization seen in FMO/TDM analyses. Transport descriptors identify low hole reorganization energy for the new HTMs and corresponding enhanced hole transfer rate of up to 4.85 × 10<sup>12</sup> s<sup>−1</sup>, outperforming the BDTP reference and comparing favorably with the Spiro-OMeTAD benchmark under a uniform model. Overall, BDTP4 and BDTP5 emerge as the most promising HTMs by jointly optimizing energy-level alignment, optical response, and intrinsic hole-transport propensity within a single, synthetically modular motif. As a DFT/TD-DFT pre-screen, these results prioritize targets for future experimental synthesis and device testing.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"302 ","pages":"Article 114005"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum designing of alkyl-silyl benzodithiophene-based hole transport materials for organic and perovskite solar cells\",\"authors\":\"Mahneema Murtaza ,&nbsp;Umar Mukhtar ,&nbsp;Nabeeha Gul ,&nbsp;Meznah M. Alanazi ,&nbsp;Saleem Iqbal ,&nbsp;Javed Iqbal\",\"doi\":\"10.1016/j.solener.2025.114005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational discovery of hole‐transport materials (HTMs) for OSCs/PSCs benefits from prescreening that links molecular structure to energy alignment and intrinsic transport before synthesis. This study reports a computational prescreening of five benzodithiophene (BDT)-based HTMs, BDTP1–BDTP5, obtained by bridging-unit engineering of a reported BDTP scaffold for viable photovoltaics. Comprehensive molecular characterization of the designed HTMs was achieved through DFT/TD-DFT simulations to investigate their structural, electronic, photophysical, and charge transport properties. Computational results show that the molecular design strategy tunes highest occupied molecular orbitals (HOMO) from –5.953 to –5.430 eV and lowest unoccupied molecular orbitals (LUMO) from –3.740 to –3.081 eV, maintaining LUMOs well above typical perovskite conduction band maxima and enabling HOMO placement relative to representative valence band maxima by acceptor choice. Band gaps follow BDTP5 (1.69 eV) &lt; BDTP4 (1.89 eV) &lt; BDTP1 (2.17 eV) &lt; BDTP2 (2.35 eV) &lt; BDTP (2.45 eV) &lt; BDTP3 (2.52 eV). In chloroform solvent, BDTP4/BDTP5 exhibit strong, red-shifted bands absorption maxima at 824/899 nm and reduced lower exciton binding energy (0.4207/0.3282 eV), consistent with backbone-spanning HOMO delocalization seen in FMO/TDM analyses. Transport descriptors identify low hole reorganization energy for the new HTMs and corresponding enhanced hole transfer rate of up to 4.85 × 10<sup>12</sup> s<sup>−1</sup>, outperforming the BDTP reference and comparing favorably with the Spiro-OMeTAD benchmark under a uniform model. Overall, BDTP4 and BDTP5 emerge as the most promising HTMs by jointly optimizing energy-level alignment, optical response, and intrinsic hole-transport propensity within a single, synthetically modular motif. As a DFT/TD-DFT pre-screen, these results prioritize targets for future experimental synthesis and device testing.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"302 \",\"pages\":\"Article 114005\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25007686\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25007686","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

合理发现用于OSCs/ psc的空穴输运材料(HTMs)得益于在合成前将分子结构与能量排列和本征输运联系起来的预筛选。本研究报道了一种基于苯二噻吩(BDT)的HTMs的计算预筛选,BDTP1-BDTP5是通过桥接单元工程获得的,用于可行的光伏电池。通过DFT/TD-DFT模拟对所设计的HTMs进行了全面的分子表征,研究了它们的结构、电子、光物理和电荷输运性质。计算结果表明,分子设计策略将最高已占据分子轨道(HOMO)从-5.953 eV调整到-5.430 eV,将最低未占据分子轨道(LUMO)从-3.740 eV调整到-3.081 eV,使LUMO远高于典型钙钛矿导带最大值,并通过受体选择使HOMO相对于代表性价带最大值放置。带隙遵循BDTP5 (1.69 eV) & lt; BDTP4 (1.89 eV) & lt; BDTP1 (2.17 eV) & lt; BDTP2 (2.35 eV) & lt; BDTP (2.45 eV) & lt; BDTP3 (2.52 eV)。在氯仿溶剂中,BDTP4/BDTP5在824/899 nm处表现出强烈的红移能带吸收,激子结合能降低(0.4207/0.3282 eV),与FMO/TDM分析中发现的跨越主干的HOMO离域一致。传输描述子确定了新HTMs的低空穴重组能和相应的高达4.85 × 1012 s−1的增强空穴转移速率,优于BDTP参考,并与统一模型下的Spiro-OMeTAD基准进行了比较。总体而言,BDTP4和BDTP5通过在单个综合模块化基序中共同优化能级对准、光学响应和固有空穴输运倾向,成为最有前途的HTMs。作为DFT/TD-DFT预筛选,这些结果优先考虑了未来实验合成和器件测试的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum designing of alkyl-silyl benzodithiophene-based hole transport materials for organic and perovskite solar cells
Rational discovery of hole‐transport materials (HTMs) for OSCs/PSCs benefits from prescreening that links molecular structure to energy alignment and intrinsic transport before synthesis. This study reports a computational prescreening of five benzodithiophene (BDT)-based HTMs, BDTP1–BDTP5, obtained by bridging-unit engineering of a reported BDTP scaffold for viable photovoltaics. Comprehensive molecular characterization of the designed HTMs was achieved through DFT/TD-DFT simulations to investigate their structural, electronic, photophysical, and charge transport properties. Computational results show that the molecular design strategy tunes highest occupied molecular orbitals (HOMO) from –5.953 to –5.430 eV and lowest unoccupied molecular orbitals (LUMO) from –3.740 to –3.081 eV, maintaining LUMOs well above typical perovskite conduction band maxima and enabling HOMO placement relative to representative valence band maxima by acceptor choice. Band gaps follow BDTP5 (1.69 eV) < BDTP4 (1.89 eV) < BDTP1 (2.17 eV) < BDTP2 (2.35 eV) < BDTP (2.45 eV) < BDTP3 (2.52 eV). In chloroform solvent, BDTP4/BDTP5 exhibit strong, red-shifted bands absorption maxima at 824/899 nm and reduced lower exciton binding energy (0.4207/0.3282 eV), consistent with backbone-spanning HOMO delocalization seen in FMO/TDM analyses. Transport descriptors identify low hole reorganization energy for the new HTMs and corresponding enhanced hole transfer rate of up to 4.85 × 1012 s−1, outperforming the BDTP reference and comparing favorably with the Spiro-OMeTAD benchmark under a uniform model. Overall, BDTP4 and BDTP5 emerge as the most promising HTMs by jointly optimizing energy-level alignment, optical response, and intrinsic hole-transport propensity within a single, synthetically modular motif. As a DFT/TD-DFT pre-screen, these results prioritize targets for future experimental synthesis and device testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信