粘土基地聚合物的抗压强度:影响因素和潜在机制的简要综述

IF 5.8 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Shoaib Hassan , Mineesha Sivakumar , Ayokunle Odunayo Alade , Shangeetha Ganesan , Mazidatulakmam Miskam
{"title":"粘土基地聚合物的抗压强度:影响因素和潜在机制的简要综述","authors":"Shoaib Hassan ,&nbsp;Mineesha Sivakumar ,&nbsp;Ayokunle Odunayo Alade ,&nbsp;Shangeetha Ganesan ,&nbsp;Mazidatulakmam Miskam","doi":"10.1016/j.clay.2025.107985","DOIUrl":null,"url":null,"abstract":"<div><div>Geopolymer is a green inorganic polymer that is produced by using aluminosilicate materials, such as clay materials and industrial by-products in a highly alkaline environment. In recent years, clay had been widely used in the manufacturing of ceramics and building construction. The use of clay in geopolymer production not only reduces the environmental impact of traditional cement production, but also provides a sustainable alternative for various construction applications. Its versatility and cost-effectiveness make it an attractive option for industries looking to reduce their carbon footprint. This review is mainly focused on factors that influence the strength of clay-based geopolymers. Several factors, such as clay type, alkaline activator solution, aggregates, system ratio, curing temperature and time were discussed. The review also included mechanism of geopolymerization reaction. Overall, a combination of the appropriate clay type, aggregates, curing conditions, and activator solution is essential in achieving a high strength in geopolymers. Additionally, emerging reinforcement strategies such as nanomaterials, hybrid binders and fiber reinforcements are also discussed in context of mechanical behaviour of clay-based geopolymer.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"278 ","pages":"Article 107985"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive strength of clay-based geopolymers: A concise review of the influencing factors and underlying mechanisms\",\"authors\":\"Shoaib Hassan ,&nbsp;Mineesha Sivakumar ,&nbsp;Ayokunle Odunayo Alade ,&nbsp;Shangeetha Ganesan ,&nbsp;Mazidatulakmam Miskam\",\"doi\":\"10.1016/j.clay.2025.107985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geopolymer is a green inorganic polymer that is produced by using aluminosilicate materials, such as clay materials and industrial by-products in a highly alkaline environment. In recent years, clay had been widely used in the manufacturing of ceramics and building construction. The use of clay in geopolymer production not only reduces the environmental impact of traditional cement production, but also provides a sustainable alternative for various construction applications. Its versatility and cost-effectiveness make it an attractive option for industries looking to reduce their carbon footprint. This review is mainly focused on factors that influence the strength of clay-based geopolymers. Several factors, such as clay type, alkaline activator solution, aggregates, system ratio, curing temperature and time were discussed. The review also included mechanism of geopolymerization reaction. Overall, a combination of the appropriate clay type, aggregates, curing conditions, and activator solution is essential in achieving a high strength in geopolymers. Additionally, emerging reinforcement strategies such as nanomaterials, hybrid binders and fiber reinforcements are also discussed in context of mechanical behaviour of clay-based geopolymer.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"278 \",\"pages\":\"Article 107985\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016913172500290X\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016913172500290X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

地聚合物是一种在高碱性环境下,利用粘土等铝硅酸盐材料和工业副产品生产的绿色无机聚合物。近年来,粘土被广泛应用于陶瓷制造和建筑施工中。在地聚合物生产中使用粘土不仅减少了传统水泥生产对环境的影响,而且为各种建筑应用提供了可持续的替代方案。它的多功能性和成本效益使其成为寻求减少碳足迹的行业的一个有吸引力的选择。本文主要综述了影响粘土基地聚合物强度的因素。讨论了粘土类型、碱性活化剂溶液、集料、体系比、养护温度和养护时间等因素。综述了地聚合反应的机理。总的来说,适当的粘土类型、骨料、养护条件和活化剂溶液的组合对于实现高强度地聚合物是必不可少的。此外,新兴的增强策略,如纳米材料,杂化粘合剂和纤维增强也在粘土基地聚合物的力学行为的背景下进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compressive strength of clay-based geopolymers: A concise review of the influencing factors and underlying mechanisms

Compressive strength of clay-based geopolymers: A concise review of the influencing factors and underlying mechanisms
Geopolymer is a green inorganic polymer that is produced by using aluminosilicate materials, such as clay materials and industrial by-products in a highly alkaline environment. In recent years, clay had been widely used in the manufacturing of ceramics and building construction. The use of clay in geopolymer production not only reduces the environmental impact of traditional cement production, but also provides a sustainable alternative for various construction applications. Its versatility and cost-effectiveness make it an attractive option for industries looking to reduce their carbon footprint. This review is mainly focused on factors that influence the strength of clay-based geopolymers. Several factors, such as clay type, alkaline activator solution, aggregates, system ratio, curing temperature and time were discussed. The review also included mechanism of geopolymerization reaction. Overall, a combination of the appropriate clay type, aggregates, curing conditions, and activator solution is essential in achieving a high strength in geopolymers. Additionally, emerging reinforcement strategies such as nanomaterials, hybrid binders and fiber reinforcements are also discussed in context of mechanical behaviour of clay-based geopolymer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信