Florian Brumbauer , Norihiko L. Okamoto , Philipp Materna , Glen J. Smales , Tetsu Ichitsubo , Wolfgang Sprengel , Martin Luckabauer
{"title":"β-钛合金弹性模量工程:用Sn调节沉淀动力学","authors":"Florian Brumbauer , Norihiko L. Okamoto , Philipp Materna , Glen J. Smales , Tetsu Ichitsubo , Wolfgang Sprengel , Martin Luckabauer","doi":"10.1016/j.matdes.2025.114711","DOIUrl":null,"url":null,"abstract":"<div><div>Design strategies for <em>β</em>-Ti alloys either aim at the suppression of the diffusion-assisted, isothermal <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitation or at the controlled transformation of these precipitates into <em>α</em> phase by an <em>ω</em>-assisted route, with the kinetics of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation playing an essential role in both cases. Therefore, controlling the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation is pivotal in the design of <em>β</em>-Ti alloys with targeted properties. We propose that by controlling the Sn content added to <em>β</em>-Ti alloys a wide range of achievable microstructures for modulus engineering is accessible. Upon Sn addition, we observe an exponentially slowed down <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation based on blocking of diffusion pathways for the <em>β</em>-stabiliser atoms without the transformation being thermodynamically inhibited. This suppression of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation allows the <em>β</em>-Ti alloys to maintain a lower elastic modulus necessary for biomedical applications. Furthermore, as byproduct, reducing the number density of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitates upon Sn addition also impedes the <em>ω</em>-assisted <em>α</em>-formation, while the Sn-free forms fine, acicular intragranular <em>α</em> plates and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> side-plates with similar morphology after low temperature pre-ageing. These results provide solid evidence for the previously proposed Sn-induced kinetic deceleration and suggest that the mechanical properties can be tailored as required by the application by tuning the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitation kinetics using Sn.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"259 ","pages":"Article 114711"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic modulus engineering in β-titanium alloys: Tuning the precipitation kinetics using Sn\",\"authors\":\"Florian Brumbauer , Norihiko L. Okamoto , Philipp Materna , Glen J. Smales , Tetsu Ichitsubo , Wolfgang Sprengel , Martin Luckabauer\",\"doi\":\"10.1016/j.matdes.2025.114711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Design strategies for <em>β</em>-Ti alloys either aim at the suppression of the diffusion-assisted, isothermal <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitation or at the controlled transformation of these precipitates into <em>α</em> phase by an <em>ω</em>-assisted route, with the kinetics of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation playing an essential role in both cases. Therefore, controlling the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation is pivotal in the design of <em>β</em>-Ti alloys with targeted properties. We propose that by controlling the Sn content added to <em>β</em>-Ti alloys a wide range of achievable microstructures for modulus engineering is accessible. Upon Sn addition, we observe an exponentially slowed down <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation based on blocking of diffusion pathways for the <em>β</em>-stabiliser atoms without the transformation being thermodynamically inhibited. This suppression of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> formation allows the <em>β</em>-Ti alloys to maintain a lower elastic modulus necessary for biomedical applications. Furthermore, as byproduct, reducing the number density of <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitates upon Sn addition also impedes the <em>ω</em>-assisted <em>α</em>-formation, while the Sn-free forms fine, acicular intragranular <em>α</em> plates and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> side-plates with similar morphology after low temperature pre-ageing. These results provide solid evidence for the previously proposed Sn-induced kinetic deceleration and suggest that the mechanical properties can be tailored as required by the application by tuning the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>i</mi><mi>s</mi><mi>o</mi></mrow></msub></math></span> precipitation kinetics using Sn.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"259 \",\"pages\":\"Article 114711\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127525011311\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525011311","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Elastic modulus engineering in β-titanium alloys: Tuning the precipitation kinetics using Sn
Design strategies for β-Ti alloys either aim at the suppression of the diffusion-assisted, isothermal precipitation or at the controlled transformation of these precipitates into α phase by an ω-assisted route, with the kinetics of formation playing an essential role in both cases. Therefore, controlling the formation is pivotal in the design of β-Ti alloys with targeted properties. We propose that by controlling the Sn content added to β-Ti alloys a wide range of achievable microstructures for modulus engineering is accessible. Upon Sn addition, we observe an exponentially slowed down formation based on blocking of diffusion pathways for the β-stabiliser atoms without the transformation being thermodynamically inhibited. This suppression of formation allows the β-Ti alloys to maintain a lower elastic modulus necessary for biomedical applications. Furthermore, as byproduct, reducing the number density of precipitates upon Sn addition also impedes the ω-assisted α-formation, while the Sn-free forms fine, acicular intragranular α plates and side-plates with similar morphology after low temperature pre-ageing. These results provide solid evidence for the previously proposed Sn-induced kinetic deceleration and suggest that the mechanical properties can be tailored as required by the application by tuning the precipitation kinetics using Sn.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.