木星的全大气模型

IF 3 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Antonín Knížek , Paul B. Rimmer , Martin Ferus
{"title":"木星的全大气模型","authors":"Antonín Knížek ,&nbsp;Paul B. Rimmer ,&nbsp;Martin Ferus","doi":"10.1016/j.icarus.2025.116806","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a combined 1D photochemical–thermochemical kinetics model of Jupiter’s deeper atmosphere, troposphere and stratosphere. The model covers atmospheric pressure range from <span><math><mrow><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> bar to <span><math><mrow><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></math></span> bar and is the first model that incorporates sulfur chemistry when spanning an atmospheric region of this extent. This model incorporates a new version of the STAND reaction network with updated NH<sub>4</sub>SH chemistry, and updated Antoine equation parameters for NH<sub>4</sub>SH and H<sub>2</sub>S. Validation against current models of Jupiter’s atmosphere as well as recent observational data shows that our model successfully describes Jupiter’s main observed chemical features. Since one of the focuses of the model is the chemistry on nitrogen, it correctly predicts the formation of a mixed NH<sub>3</sub>-NH<sub>4</sub>SH cloud layer between 0.1 and 1 bar. It also describes the chemistry of HCN throughout the atmosphere and discovers a region in the stratosphere between <span><math><mrow><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>6</mn><mo>.</mo><mn>76</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> bar, where HCN forms through radical chemistry with maximum mixing ratio 33 ppb at <span><math><mrow><mn>2</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> bar – a prediction testable by observations. At the same time, our model predicts a quenched N<sub>2</sub> mixing ratio 490 ppm up to 10<sup>−6</sup> bar. The model therefore successfully bridges the gap between existing models of separate regions of Jupiter’s atmosphere and makes new testable predictions of several chemical species.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"444 ","pages":"Article 116806"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A full-atmosphere model of Jupiter\",\"authors\":\"Antonín Knížek ,&nbsp;Paul B. Rimmer ,&nbsp;Martin Ferus\",\"doi\":\"10.1016/j.icarus.2025.116806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a combined 1D photochemical–thermochemical kinetics model of Jupiter’s deeper atmosphere, troposphere and stratosphere. The model covers atmospheric pressure range from <span><math><mrow><mn>1</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> bar to <span><math><mrow><mn>7</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></math></span> bar and is the first model that incorporates sulfur chemistry when spanning an atmospheric region of this extent. This model incorporates a new version of the STAND reaction network with updated NH<sub>4</sub>SH chemistry, and updated Antoine equation parameters for NH<sub>4</sub>SH and H<sub>2</sub>S. Validation against current models of Jupiter’s atmosphere as well as recent observational data shows that our model successfully describes Jupiter’s main observed chemical features. Since one of the focuses of the model is the chemistry on nitrogen, it correctly predicts the formation of a mixed NH<sub>3</sub>-NH<sub>4</sub>SH cloud layer between 0.1 and 1 bar. It also describes the chemistry of HCN throughout the atmosphere and discovers a region in the stratosphere between <span><math><mrow><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>6</mn><mo>.</mo><mn>76</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> bar, where HCN forms through radical chemistry with maximum mixing ratio 33 ppb at <span><math><mrow><mn>2</mn><mo>.</mo><mn>94</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></math></span> bar – a prediction testable by observations. At the same time, our model predicts a quenched N<sub>2</sub> mixing ratio 490 ppm up to 10<sup>−6</sup> bar. The model therefore successfully bridges the gap between existing models of separate regions of Jupiter’s atmosphere and makes new testable predictions of several chemical species.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"444 \",\"pages\":\"Article 116806\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103525003549\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525003549","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了木星深层大气、对流层和平流层的一维光化学-热化学联合动力学模型。该模型涵盖了从1.1×103 bar到7.4×10 - 11 bar的大气压力范围,是第一个在跨越这种程度的大气区域时纳入硫化学的模型。该模型结合了一个新版本的STAND反应网络,更新了NH4SH化学,更新了NH4SH和H2S的Antoine方程参数。对目前木星大气模型的验证以及最近的观测数据表明,我们的模型成功地描述了木星观测到的主要化学特征。由于该模型的重点之一是氮的化学性质,因此它正确地预测了0.1 - 1bar之间NH3-NH4SH混合云层的形成。它还描述了整个大气中HCN的化学成分,并发现在1×10−6和6.76×10−8 bar之间的平流层中有一个区域,在2.94×10−7 bar时,HCN通过自由基化学形成,最大混合比为33 ppb,这一预测可以通过观测来验证。同时,我们的模型预测了淬火后的N2混合比为490 ppm,最高可达10−6 bar。因此,该模型成功地弥补了现有木星大气不同区域模型之间的差距,并对几种化学物质做出了新的可测试的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A full-atmosphere model of Jupiter
This paper presents a combined 1D photochemical–thermochemical kinetics model of Jupiter’s deeper atmosphere, troposphere and stratosphere. The model covers atmospheric pressure range from 1.1×103 bar to 7.4×1011 bar and is the first model that incorporates sulfur chemistry when spanning an atmospheric region of this extent. This model incorporates a new version of the STAND reaction network with updated NH4SH chemistry, and updated Antoine equation parameters for NH4SH and H2S. Validation against current models of Jupiter’s atmosphere as well as recent observational data shows that our model successfully describes Jupiter’s main observed chemical features. Since one of the focuses of the model is the chemistry on nitrogen, it correctly predicts the formation of a mixed NH3-NH4SH cloud layer between 0.1 and 1 bar. It also describes the chemistry of HCN throughout the atmosphere and discovers a region in the stratosphere between 1×106 and 6.76×108 bar, where HCN forms through radical chemistry with maximum mixing ratio 33 ppb at 2.94×107 bar – a prediction testable by observations. At the same time, our model predicts a quenched N2 mixing ratio 490 ppm up to 10−6 bar. The model therefore successfully bridges the gap between existing models of separate regions of Jupiter’s atmosphere and makes new testable predictions of several chemical species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icarus
Icarus 地学天文-天文与天体物理
CiteScore
6.30
自引率
18.80%
发文量
356
审稿时长
2-4 weeks
期刊介绍: Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信