审计意见预测的双模型协同:一种协同LLM代理框架方法

IF 5.6 2区 经济学 Q1 BUSINESS, FINANCE
Yi Lu, Jinxing Hao, Xuesong Tang
{"title":"审计意见预测的双模型协同:一种协同LLM代理框架方法","authors":"Yi Lu,&nbsp;Jinxing Hao,&nbsp;Xuesong Tang","doi":"10.1016/j.iref.2025.104642","DOIUrl":null,"url":null,"abstract":"<div><div>By combining the capabilities of Moonshot and DeepSeek-R1, which respectively evaluate risk scores based on MD&amp;A text information and financial data, we exploit the complementary strengths of long-context and reasoning large language models (LLMs) to help evaluate material misstatement risks in audit opinions. Our results suggest that both MD&amp;A-based and financial-based risk evaluations effectively distinguish qualified and unqualified audit opinions, but combining them yields the best performance. In addition to the interpretative analysis text output, the combined LLM evaluation consistently outperforms logistic regression prediction that incorporates all indicators, and it achieves comparable performance compared to the sophisticated machine learning methods like gradient boosting regression and random forests.</div><div>Further analysis reveals that LLMs excel in high-risk scenarios: in firms with 1) high financial constraints, 2) low internal controls, 3) low audit quality, 4) low readability, or 5) negative tone of MD&amp;A texts. A topic model analysis has shown clear difference in the MD&amp;A emphasis for firms the qualified and unqualified opinions given by our framework. These findings shed light on the potential role of the collaborative LLM agent framework as a tool to help auditors and investors detect financial fraud.</div></div>","PeriodicalId":14444,"journal":{"name":"International Review of Economics & Finance","volume":"104 ","pages":"Article 104642"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-model synergy for audit opinion prediction: A collaborative LLM agent framework approach\",\"authors\":\"Yi Lu,&nbsp;Jinxing Hao,&nbsp;Xuesong Tang\",\"doi\":\"10.1016/j.iref.2025.104642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By combining the capabilities of Moonshot and DeepSeek-R1, which respectively evaluate risk scores based on MD&amp;A text information and financial data, we exploit the complementary strengths of long-context and reasoning large language models (LLMs) to help evaluate material misstatement risks in audit opinions. Our results suggest that both MD&amp;A-based and financial-based risk evaluations effectively distinguish qualified and unqualified audit opinions, but combining them yields the best performance. In addition to the interpretative analysis text output, the combined LLM evaluation consistently outperforms logistic regression prediction that incorporates all indicators, and it achieves comparable performance compared to the sophisticated machine learning methods like gradient boosting regression and random forests.</div><div>Further analysis reveals that LLMs excel in high-risk scenarios: in firms with 1) high financial constraints, 2) low internal controls, 3) low audit quality, 4) low readability, or 5) negative tone of MD&amp;A texts. A topic model analysis has shown clear difference in the MD&amp;A emphasis for firms the qualified and unqualified opinions given by our framework. These findings shed light on the potential role of the collaborative LLM agent framework as a tool to help auditors and investors detect financial fraud.</div></div>\",\"PeriodicalId\":14444,\"journal\":{\"name\":\"International Review of Economics & Finance\",\"volume\":\"104 \",\"pages\":\"Article 104642\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Economics & Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1059056025008056\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Economics & Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1059056025008056","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

通过结合Moonshot和DeepSeek-R1(分别基于MD&;A文本信息和财务数据评估风险评分)的能力,我们利用长上下文和推理大语言模型(llm)的互补优势来帮助评估审计意见中的重大错报风险。我们的研究结果表明,基于MD&的风险评价和基于财务的风险评价都能有效地区分合格和不合格的审计意见,但将它们结合起来会产生最佳绩效。除了解释性分析文本输出外,组合的LLM评估始终优于包含所有指标的逻辑回归预测,并且与梯度增强回归和随机森林等复杂的机器学习方法相比,它的性能相当。进一步分析表明,法学硕士在高风险情况下表现出色:1)高财务约束,2)低内部控制,3)低审计质量,4)低可读性,或5)MD&;A文本的负面基调。主题模型分析表明,MD&;A强调公司对我们的框架给出的合格意见和不合格意见的重视程度存在明显差异。这些发现揭示了协作法学硕士代理框架作为帮助审计师和投资者发现财务欺诈的工具的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-model synergy for audit opinion prediction: A collaborative LLM agent framework approach
By combining the capabilities of Moonshot and DeepSeek-R1, which respectively evaluate risk scores based on MD&A text information and financial data, we exploit the complementary strengths of long-context and reasoning large language models (LLMs) to help evaluate material misstatement risks in audit opinions. Our results suggest that both MD&A-based and financial-based risk evaluations effectively distinguish qualified and unqualified audit opinions, but combining them yields the best performance. In addition to the interpretative analysis text output, the combined LLM evaluation consistently outperforms logistic regression prediction that incorporates all indicators, and it achieves comparable performance compared to the sophisticated machine learning methods like gradient boosting regression and random forests.
Further analysis reveals that LLMs excel in high-risk scenarios: in firms with 1) high financial constraints, 2) low internal controls, 3) low audit quality, 4) low readability, or 5) negative tone of MD&A texts. A topic model analysis has shown clear difference in the MD&A emphasis for firms the qualified and unqualified opinions given by our framework. These findings shed light on the potential role of the collaborative LLM agent framework as a tool to help auditors and investors detect financial fraud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
2.20%
发文量
253
期刊介绍: The International Review of Economics & Finance (IREF) is a scholarly journal devoted to the publication of high quality theoretical and empirical articles in all areas of international economics, macroeconomics and financial economics. Contributions that facilitate the communications between the real and the financial sectors of the economy are of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信