Shixue Zheng , Chloe Chan , John M. Asara , Liang Zhang , Gerhard Wiche , Y. Rebecca Chin
{"title":"Akt3磷酸化plectin促进三阴性乳腺癌细胞侵袭性迁移","authors":"Shixue Zheng , Chloe Chan , John M. Asara , Liang Zhang , Gerhard Wiche , Y. Rebecca Chin","doi":"10.1016/j.isci.2025.113552","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) lacks targeted therapeutics and is aggressive with a poor prognosis. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, frequently deregulated in cancers, plays crucial roles in tumorigenesis and cancer progression. However, the distinct functions of the three Akt isoforms (Akt1, Akt2, Akt3) in these processes are not well understood. Here, we focus on Akt3, the least-studied Akt isoform, which is overexpressed in 28% of TNBC cases and significantly promotes TNBC growth, stemness, and epithelial-mesenchymal transition. Through a genome-wide proteomic screen, we identified plectin, a member of the plakin family, as an Akt3 substrate in TNBC cells. The depletion of plectin potently inhibits TNBC cell migration and invadopodia formation, albeit with mild effects on cell growth. The phosphorylation of plectin at Ser4268 by Akt promotes its colocalization with vimentin and TNBC cell migration. Our findings underscore the importance of Akt3-plectin signaling as a potential TNBC therapeutic target.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 10","pages":"Article 113552"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation of plectin by Akt3 promotes triple-negative breast cancer cell invasive migration\",\"authors\":\"Shixue Zheng , Chloe Chan , John M. Asara , Liang Zhang , Gerhard Wiche , Y. Rebecca Chin\",\"doi\":\"10.1016/j.isci.2025.113552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Triple-negative breast cancer (TNBC) lacks targeted therapeutics and is aggressive with a poor prognosis. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, frequently deregulated in cancers, plays crucial roles in tumorigenesis and cancer progression. However, the distinct functions of the three Akt isoforms (Akt1, Akt2, Akt3) in these processes are not well understood. Here, we focus on Akt3, the least-studied Akt isoform, which is overexpressed in 28% of TNBC cases and significantly promotes TNBC growth, stemness, and epithelial-mesenchymal transition. Through a genome-wide proteomic screen, we identified plectin, a member of the plakin family, as an Akt3 substrate in TNBC cells. The depletion of plectin potently inhibits TNBC cell migration and invadopodia formation, albeit with mild effects on cell growth. The phosphorylation of plectin at Ser4268 by Akt promotes its colocalization with vimentin and TNBC cell migration. Our findings underscore the importance of Akt3-plectin signaling as a potential TNBC therapeutic target.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 10\",\"pages\":\"Article 113552\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225018139\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225018139","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Phosphorylation of plectin by Akt3 promotes triple-negative breast cancer cell invasive migration
Triple-negative breast cancer (TNBC) lacks targeted therapeutics and is aggressive with a poor prognosis. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, frequently deregulated in cancers, plays crucial roles in tumorigenesis and cancer progression. However, the distinct functions of the three Akt isoforms (Akt1, Akt2, Akt3) in these processes are not well understood. Here, we focus on Akt3, the least-studied Akt isoform, which is overexpressed in 28% of TNBC cases and significantly promotes TNBC growth, stemness, and epithelial-mesenchymal transition. Through a genome-wide proteomic screen, we identified plectin, a member of the plakin family, as an Akt3 substrate in TNBC cells. The depletion of plectin potently inhibits TNBC cell migration and invadopodia formation, albeit with mild effects on cell growth. The phosphorylation of plectin at Ser4268 by Akt promotes its colocalization with vimentin and TNBC cell migration. Our findings underscore the importance of Akt3-plectin signaling as a potential TNBC therapeutic target.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.