多模态平面实例分割与片段任何模型

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zhongchen Deng , Zhechen Yang , Chi Chen , Cheng Zeng , Yan Meng , Bisheng Yang
{"title":"多模态平面实例分割与片段任何模型","authors":"Zhongchen Deng ,&nbsp;Zhechen Yang ,&nbsp;Chi Chen ,&nbsp;Cheng Zeng ,&nbsp;Yan Meng ,&nbsp;Bisheng Yang","doi":"10.1016/j.autcon.2025.106541","DOIUrl":null,"url":null,"abstract":"<div><div>Plane instance segmentation from RGB-D data is critical for BIM-related tasks. However, existing deep-learning methods rely on only RGB bands, overlooking depth information. To address this, PlaneSAM, a Segment-Anything-Model-based network, is proposed. It fully integrates RGB-D bands using a dual-complexity backbone: a simple branch primarily for the D band and a high-capacity branch mainly for RGB bands. This structure facilitates effective D-band learning with limited data, preserves EfficientSAM’s RGB feature representations, and enables task-specific fine-tuning. To improve adaptability to RGB-D domains, a self-supervised pretraining strategy is introduced. EfficientSAM’s loss is also optimized for large-plane segmentation. Additionally, plane detection is performed using Faster R-CNN, enabling fully automatic segmentation. State-of-the-art performance is achieved on multiple datasets, with <span><math><mo>&lt;</mo></math></span>10% additional overhead compared to EfficientSAM. The proposed dual-complexity backbone shows strong potential for transferring RGB-based foundation models to RGB<span><math><mo>+</mo></math></span>X domains in other scenarios, while the pretraining strategy is promising for other data-scarce tasks.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"180 ","pages":"Article 106541"},"PeriodicalIF":11.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal plane instance segmentation with the Segment Anything Model\",\"authors\":\"Zhongchen Deng ,&nbsp;Zhechen Yang ,&nbsp;Chi Chen ,&nbsp;Cheng Zeng ,&nbsp;Yan Meng ,&nbsp;Bisheng Yang\",\"doi\":\"10.1016/j.autcon.2025.106541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plane instance segmentation from RGB-D data is critical for BIM-related tasks. However, existing deep-learning methods rely on only RGB bands, overlooking depth information. To address this, PlaneSAM, a Segment-Anything-Model-based network, is proposed. It fully integrates RGB-D bands using a dual-complexity backbone: a simple branch primarily for the D band and a high-capacity branch mainly for RGB bands. This structure facilitates effective D-band learning with limited data, preserves EfficientSAM’s RGB feature representations, and enables task-specific fine-tuning. To improve adaptability to RGB-D domains, a self-supervised pretraining strategy is introduced. EfficientSAM’s loss is also optimized for large-plane segmentation. Additionally, plane detection is performed using Faster R-CNN, enabling fully automatic segmentation. State-of-the-art performance is achieved on multiple datasets, with <span><math><mo>&lt;</mo></math></span>10% additional overhead compared to EfficientSAM. The proposed dual-complexity backbone shows strong potential for transferring RGB-based foundation models to RGB<span><math><mo>+</mo></math></span>X domains in other scenarios, while the pretraining strategy is promising for other data-scarce tasks.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"180 \",\"pages\":\"Article 106541\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525005813\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525005813","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从RGB-D数据中分割平面实例对于与bim相关的任务至关重要。然而,现有的深度学习方法仅依赖于RGB波段,忽略了深度信息。为了解决这个问题,提出了PlaneSAM,一种基于任何模型的分段网络。它采用双复杂骨干网,将RGB-D频段完全融合在一起:一个以D频段为主的简单分支和一个以RGB频段为主的大容量分支。这种结构有助于使用有限的数据进行有效的d波段学习,保留了EfficientSAM的RGB特征表示,并支持特定于任务的微调。为了提高对RGB-D域的适应性,引入了一种自监督预训练策略。EfficientSAM的损失也针对大平面分割进行了优化。此外,使用更快的R-CNN进行平面检测,实现全自动分割。在多个数据集上实现了最先进的性能,与EfficientSAM相比,开销增加了10%。所提出的双复杂度主干在其他场景下显示出将基于RGB的基础模型转移到RGB+X域的强大潜力,而预训练策略在其他数据稀缺任务中也很有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal plane instance segmentation with the Segment Anything Model
Plane instance segmentation from RGB-D data is critical for BIM-related tasks. However, existing deep-learning methods rely on only RGB bands, overlooking depth information. To address this, PlaneSAM, a Segment-Anything-Model-based network, is proposed. It fully integrates RGB-D bands using a dual-complexity backbone: a simple branch primarily for the D band and a high-capacity branch mainly for RGB bands. This structure facilitates effective D-band learning with limited data, preserves EfficientSAM’s RGB feature representations, and enables task-specific fine-tuning. To improve adaptability to RGB-D domains, a self-supervised pretraining strategy is introduced. EfficientSAM’s loss is also optimized for large-plane segmentation. Additionally, plane detection is performed using Faster R-CNN, enabling fully automatic segmentation. State-of-the-art performance is achieved on multiple datasets, with <10% additional overhead compared to EfficientSAM. The proposed dual-complexity backbone shows strong potential for transferring RGB-based foundation models to RGB+X domains in other scenarios, while the pretraining strategy is promising for other data-scarce tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信