Shuai Liu , Qunfu Fan , Sijia Li , Yicang Huang , Yujie Chen , Hezhou Liu
{"title":"项链结构FeCoNi@N-doped多孔碳纳米纤维强磁耦合高性能微波吸收","authors":"Shuai Liu , Qunfu Fan , Sijia Li , Yicang Huang , Yujie Chen , Hezhou Liu","doi":"10.1016/j.compscitech.2025.111389","DOIUrl":null,"url":null,"abstract":"<div><div>One-dimensional (1D) carbon-based magnetic fibers, characterized by rational multicomponent regulation and refined microstructure design, have emerged as promising candidates for high-performance electromagnetic wave (EMW) absorption. However, conventional 1D absorbers often suffer from densely aggregated and randomly oriented magnetic nanoparticles embedded in carbon matrices, which severely restricts magnetic coupling and consequently compromises magnetic loss capabilities. In this study, 1D necklace-structured nitrogen-doped porous carbon nanofibers embedded with FeCoNi nanoparticles (FeCoNi@NPCNFs) were successfully fabricated through a synergistic combination of hydrothermal synthesis, coaxial electrospinning, and controlled carbonization. By precisely regulating the spatial arrangement of magnetic nanoparticles, we achieved uniform dispersion and enhanced interparticle magnetic interactions within the NPCNFs, resulting in stronger magnetic anisotropy and elevated saturation magnetization. Impressively, the well-designed necklace-like FeCoNi@NPCNFs demonstrated a minimum reflection loss (RL<sub>min</sub>) of −52.36 dB at an ultrathin thickness of 1.46 mm, accompanied by a broad effective absorption bandwidth (EAB) of 5.52 GHz (11.70–17.22 GHz) measured at 1.66 mm, which significantly outperformed single-component FeCoNi@CNFs (RL<sub>min</sub> = −17.08 dB, EAB = 4.75 GHz). Such excellent EMW absorption performance can be attributed to the multiple magnetic coupling networks, as well as the multiple interface polarization among the biphasic FeCoNi alloys, N-doped carbon species, and the core-shell porous structure. This work proposes a groundbreaking design strategy for high-efficiency, ultra-thin magnetic fibrous EMW absorbers.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"272 ","pages":"Article 111389"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necklace-structured FeCoNi@N-doped porous carbon nanofibers with strong magnetic coupling for high-performance microwave absorption\",\"authors\":\"Shuai Liu , Qunfu Fan , Sijia Li , Yicang Huang , Yujie Chen , Hezhou Liu\",\"doi\":\"10.1016/j.compscitech.2025.111389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One-dimensional (1D) carbon-based magnetic fibers, characterized by rational multicomponent regulation and refined microstructure design, have emerged as promising candidates for high-performance electromagnetic wave (EMW) absorption. However, conventional 1D absorbers often suffer from densely aggregated and randomly oriented magnetic nanoparticles embedded in carbon matrices, which severely restricts magnetic coupling and consequently compromises magnetic loss capabilities. In this study, 1D necklace-structured nitrogen-doped porous carbon nanofibers embedded with FeCoNi nanoparticles (FeCoNi@NPCNFs) were successfully fabricated through a synergistic combination of hydrothermal synthesis, coaxial electrospinning, and controlled carbonization. By precisely regulating the spatial arrangement of magnetic nanoparticles, we achieved uniform dispersion and enhanced interparticle magnetic interactions within the NPCNFs, resulting in stronger magnetic anisotropy and elevated saturation magnetization. Impressively, the well-designed necklace-like FeCoNi@NPCNFs demonstrated a minimum reflection loss (RL<sub>min</sub>) of −52.36 dB at an ultrathin thickness of 1.46 mm, accompanied by a broad effective absorption bandwidth (EAB) of 5.52 GHz (11.70–17.22 GHz) measured at 1.66 mm, which significantly outperformed single-component FeCoNi@CNFs (RL<sub>min</sub> = −17.08 dB, EAB = 4.75 GHz). Such excellent EMW absorption performance can be attributed to the multiple magnetic coupling networks, as well as the multiple interface polarization among the biphasic FeCoNi alloys, N-doped carbon species, and the core-shell porous structure. This work proposes a groundbreaking design strategy for high-efficiency, ultra-thin magnetic fibrous EMW absorbers.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"272 \",\"pages\":\"Article 111389\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825003574\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825003574","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Necklace-structured FeCoNi@N-doped porous carbon nanofibers with strong magnetic coupling for high-performance microwave absorption
One-dimensional (1D) carbon-based magnetic fibers, characterized by rational multicomponent regulation and refined microstructure design, have emerged as promising candidates for high-performance electromagnetic wave (EMW) absorption. However, conventional 1D absorbers often suffer from densely aggregated and randomly oriented magnetic nanoparticles embedded in carbon matrices, which severely restricts magnetic coupling and consequently compromises magnetic loss capabilities. In this study, 1D necklace-structured nitrogen-doped porous carbon nanofibers embedded with FeCoNi nanoparticles (FeCoNi@NPCNFs) were successfully fabricated through a synergistic combination of hydrothermal synthesis, coaxial electrospinning, and controlled carbonization. By precisely regulating the spatial arrangement of magnetic nanoparticles, we achieved uniform dispersion and enhanced interparticle magnetic interactions within the NPCNFs, resulting in stronger magnetic anisotropy and elevated saturation magnetization. Impressively, the well-designed necklace-like FeCoNi@NPCNFs demonstrated a minimum reflection loss (RLmin) of −52.36 dB at an ultrathin thickness of 1.46 mm, accompanied by a broad effective absorption bandwidth (EAB) of 5.52 GHz (11.70–17.22 GHz) measured at 1.66 mm, which significantly outperformed single-component FeCoNi@CNFs (RLmin = −17.08 dB, EAB = 4.75 GHz). Such excellent EMW absorption performance can be attributed to the multiple magnetic coupling networks, as well as the multiple interface polarization among the biphasic FeCoNi alloys, N-doped carbon species, and the core-shell porous structure. This work proposes a groundbreaking design strategy for high-efficiency, ultra-thin magnetic fibrous EMW absorbers.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.