机械振动辅助冷轧Cu/Al复合材料板界面微观结构演变及多尺度键合机制

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaojie Tian , Hao Wu , Xuefeng Liu , Wenjing Wang
{"title":"机械振动辅助冷轧Cu/Al复合材料板界面微观结构演变及多尺度键合机制","authors":"Shaojie Tian ,&nbsp;Hao Wu ,&nbsp;Xuefeng Liu ,&nbsp;Wenjing Wang","doi":"10.1016/j.msea.2025.149159","DOIUrl":null,"url":null,"abstract":"<div><div>Direct interfacial severe shear plastic deformation is critically important for manufacturing high-performance metallic laminated composites. This study pioneers the application of mechanical vibration-assisted rolling (MVAR) to the Cu/Al cold roll bonding process, enabling controlled severe shear plastic deformation at the interface. The influence of mechanical vibration on the Cu/Al cold rolling process was systematically investigated, and the underlying strengthening mechanisms were elucidated. Experimental results demonstrate that under 30 % reduction, MVAR achieves interfacial bonding strength of 66.8 N cm<sup>−1</sup>, representing a 107 % enhancement compared to traditional rolling (TR). Microstructural characterization reveals dual coupling strengthening mechanisms: Vibration-induced periodic shear stress (peak &gt;220 MPa) facilitates the formation of three-dimensional mechanical interlocking structures at the interface, with hook depth increased by 3.2 times (12.5 ± 1.8 μm) compared to TR. Intensive plastic deformation elevates interfacial dislocation density to 10<sup>17</sup> m<sup>−2</sup> magnitude, synergized with in situ frictional heating (Δ<em>T</em> ≈ 138.7 °C), which enhances Cu/Al interdiffusion coefficient by 2.98 times (<em>D</em><sub>Al-Cu</sub> = 6.7 × 10<sup>−16</sup> m<sup>2</sup> s<sup>−1</sup>). This combined effect generates gradient nanocrystalline structures (grain size &lt;1 μm) and continuous Al<sub>2</sub>Cu/CuAl<sub>2</sub> transition layers (200–500 nm). This technology overcomes the inherent limitation of conventional rolling that relies on bulk deformation, establishing a novel “interface-direct-writing” plastic processing paradigm for developing high-efficiency solid-state composite technologies.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149159"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial microstructure evolution and multiscale bonding mechanisms in mechanical vibration-assisted cold-rolled Cu/Al composite plates\",\"authors\":\"Shaojie Tian ,&nbsp;Hao Wu ,&nbsp;Xuefeng Liu ,&nbsp;Wenjing Wang\",\"doi\":\"10.1016/j.msea.2025.149159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Direct interfacial severe shear plastic deformation is critically important for manufacturing high-performance metallic laminated composites. This study pioneers the application of mechanical vibration-assisted rolling (MVAR) to the Cu/Al cold roll bonding process, enabling controlled severe shear plastic deformation at the interface. The influence of mechanical vibration on the Cu/Al cold rolling process was systematically investigated, and the underlying strengthening mechanisms were elucidated. Experimental results demonstrate that under 30 % reduction, MVAR achieves interfacial bonding strength of 66.8 N cm<sup>−1</sup>, representing a 107 % enhancement compared to traditional rolling (TR). Microstructural characterization reveals dual coupling strengthening mechanisms: Vibration-induced periodic shear stress (peak &gt;220 MPa) facilitates the formation of three-dimensional mechanical interlocking structures at the interface, with hook depth increased by 3.2 times (12.5 ± 1.8 μm) compared to TR. Intensive plastic deformation elevates interfacial dislocation density to 10<sup>17</sup> m<sup>−2</sup> magnitude, synergized with in situ frictional heating (Δ<em>T</em> ≈ 138.7 °C), which enhances Cu/Al interdiffusion coefficient by 2.98 times (<em>D</em><sub>Al-Cu</sub> = 6.7 × 10<sup>−16</sup> m<sup>2</sup> s<sup>−1</sup>). This combined effect generates gradient nanocrystalline structures (grain size &lt;1 μm) and continuous Al<sub>2</sub>Cu/CuAl<sub>2</sub> transition layers (200–500 nm). This technology overcomes the inherent limitation of conventional rolling that relies on bulk deformation, establishing a novel “interface-direct-writing” plastic processing paradigm for developing high-efficiency solid-state composite technologies.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"946 \",\"pages\":\"Article 149159\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325013838\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

直接界面剧烈剪切塑性变形是制造高性能金属层合复合材料的关键。该研究率先将机械振动辅助轧制(MVAR)应用于Cu/Al冷轧结合过程,实现了界面处可控的剧烈剪切塑性变形。系统研究了机械振动对Cu/Al冷轧过程的影响,并阐明了其强化机理。实验结果表明,在减少30%的情况下,MVAR的界面结合强度达到66.8 N cm−1,比传统轧制(TR)提高了107%。微观结构表征揭示了双重耦合强化机制:振动诱发的周期性剪切应力(峰值为220 MPa)促进了界面三维机械联锁结构的形成,与TR相比,勾深度增加了3.2倍(12.5±1.8 μm)。强烈的塑性变形使界面位错密度达到1017 m−2量级,与原位摩擦加热(ΔT≈138.7°C)协同作用,使Cu/Al互扩散系数提高了2.98倍(DAl-Cu = 6.7 × 10−16 m2 s−1)。这种综合效应产生了梯度纳米晶结构(晶粒尺寸<;1 μm)和连续的Al2Cu/CuAl2过渡层(200-500 nm)。该技术克服了传统轧制依赖体变形的固有局限性,为开发高效固态复合材料技术建立了一种新的“界面直写”塑性加工范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial microstructure evolution and multiscale bonding mechanisms in mechanical vibration-assisted cold-rolled Cu/Al composite plates
Direct interfacial severe shear plastic deformation is critically important for manufacturing high-performance metallic laminated composites. This study pioneers the application of mechanical vibration-assisted rolling (MVAR) to the Cu/Al cold roll bonding process, enabling controlled severe shear plastic deformation at the interface. The influence of mechanical vibration on the Cu/Al cold rolling process was systematically investigated, and the underlying strengthening mechanisms were elucidated. Experimental results demonstrate that under 30 % reduction, MVAR achieves interfacial bonding strength of 66.8 N cm−1, representing a 107 % enhancement compared to traditional rolling (TR). Microstructural characterization reveals dual coupling strengthening mechanisms: Vibration-induced periodic shear stress (peak >220 MPa) facilitates the formation of three-dimensional mechanical interlocking structures at the interface, with hook depth increased by 3.2 times (12.5 ± 1.8 μm) compared to TR. Intensive plastic deformation elevates interfacial dislocation density to 1017 m−2 magnitude, synergized with in situ frictional heating (ΔT ≈ 138.7 °C), which enhances Cu/Al interdiffusion coefficient by 2.98 times (DAl-Cu = 6.7 × 10−16 m2 s−1). This combined effect generates gradient nanocrystalline structures (grain size <1 μm) and continuous Al2Cu/CuAl2 transition layers (200–500 nm). This technology overcomes the inherent limitation of conventional rolling that relies on bulk deformation, establishing a novel “interface-direct-writing” plastic processing paradigm for developing high-efficiency solid-state composite technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信