液晶弹性体中定向图案的计算优化

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingting Xu , Thao D. Nguyen , James K. Guest
{"title":"液晶弹性体中定向图案的计算优化","authors":"Tingting Xu ,&nbsp;Thao D. Nguyen ,&nbsp;James K. Guest","doi":"10.1016/j.jmps.2025.106369","DOIUrl":null,"url":null,"abstract":"<div><div>We present a computational framework for optimizing the director distributions in viscoelastic liquid crystal elastomer (LCE) structures. The framework begins with a finite element implementation of a viscoelastic finite strain model to capture the time-dependent behavior of LCEs. This model is coupled with an optimization scheme that optimizes the spatially continuous director field for targeted mechanical performance. A time-dependent adjoint sensitivity analysis is employed to enable efficient gradient-based design updates. The framework is demonstrated through numerical examples that maximize mechanical work and maximize energy dissipation. Maximizing the mechanical work produces optimized director patterns that are aligned with principal stress directions, resulting in minimal reorientation and increased stiffness. Maximizing the energy dissipation produces director patterns that depend on whether viscous director rotation or network deformation is the dominant dissipation mechanism. These results highlight opportunities for optimizing LCE structures and underscore the importance of accurately modeling the viscoelastic response when designing LCE structures for reliable, long-term functionality.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106369"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational optimization of director patterns in liquid crystal elastomers\",\"authors\":\"Tingting Xu ,&nbsp;Thao D. Nguyen ,&nbsp;James K. Guest\",\"doi\":\"10.1016/j.jmps.2025.106369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a computational framework for optimizing the director distributions in viscoelastic liquid crystal elastomer (LCE) structures. The framework begins with a finite element implementation of a viscoelastic finite strain model to capture the time-dependent behavior of LCEs. This model is coupled with an optimization scheme that optimizes the spatially continuous director field for targeted mechanical performance. A time-dependent adjoint sensitivity analysis is employed to enable efficient gradient-based design updates. The framework is demonstrated through numerical examples that maximize mechanical work and maximize energy dissipation. Maximizing the mechanical work produces optimized director patterns that are aligned with principal stress directions, resulting in minimal reorientation and increased stiffness. Maximizing the energy dissipation produces director patterns that depend on whether viscous director rotation or network deformation is the dominant dissipation mechanism. These results highlight opportunities for optimizing LCE structures and underscore the importance of accurately modeling the viscoelastic response when designing LCE structures for reliable, long-term functionality.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"206 \",\"pages\":\"Article 106369\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625003436\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003436","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种优化粘弹性液晶弹性体(LCE)结构中定向器分布的计算框架。该框架从粘弹性有限应变模型的有限元实现开始,以捕获LCEs的时间依赖性行为。该模型与优化方案相结合,优化空间连续导向场以实现目标机械性能。采用时间相关的伴随灵敏度分析来实现基于梯度的有效设计更新。通过数值算例证明了该框架能最大限度地实现机械功和能量耗散。最大限度地增加机械功可以优化导向模式,使其与主应力方向一致,从而减少定向,增加刚度。最大限度地耗散能量产生的导向模式取决于粘性导向旋转还是网络变形是主要的耗散机制。这些结果突出了优化LCE结构的机会,并强调了在设计LCE结构时准确建模粘弹性响应的重要性,以获得可靠的长期功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational optimization of director patterns in liquid crystal elastomers
We present a computational framework for optimizing the director distributions in viscoelastic liquid crystal elastomer (LCE) structures. The framework begins with a finite element implementation of a viscoelastic finite strain model to capture the time-dependent behavior of LCEs. This model is coupled with an optimization scheme that optimizes the spatially continuous director field for targeted mechanical performance. A time-dependent adjoint sensitivity analysis is employed to enable efficient gradient-based design updates. The framework is demonstrated through numerical examples that maximize mechanical work and maximize energy dissipation. Maximizing the mechanical work produces optimized director patterns that are aligned with principal stress directions, resulting in minimal reorientation and increased stiffness. Maximizing the energy dissipation produces director patterns that depend on whether viscous director rotation or network deformation is the dominant dissipation mechanism. These results highlight opportunities for optimizing LCE structures and underscore the importance of accurately modeling the viscoelastic response when designing LCE structures for reliable, long-term functionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信