角膜瞬态横波弹性成像的有限元模拟

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Giulia Merlini , Sebastien Imperiale , Jean-Marc Allain
{"title":"角膜瞬态横波弹性成像的有限元模拟","authors":"Giulia Merlini ,&nbsp;Sebastien Imperiale ,&nbsp;Jean-Marc Allain","doi":"10.1016/j.jmps.2025.106363","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in dynamic elastography have enabled rapid, localized, and non-invasive mechanical data acquisition of the cornea. This data opens the path to early-detection of pathologies and more accurate treatment. However, the analysis of the wave propagation is a complex mechanical problem: the cornea is a structure under pressure, with non-linear material behavior. Thus, computational analysis are needed to extract mechanical parameters from the data. In this study, we present a time-dependent finite element model for the reproduction of transient shear wave elastographic measurements in the cornea. The mechanical problem consists in a small-amplitude wave propagating in the cornea, largely deformed by intraocular pressure in physiological conditions. The model accounts for anisotropic, hyperelastic, and incompressible behavior of the cornea, as well as its accurate geometry and preloaded condition. We have implemented two different numerical approaches to solve first the static non-linear inflation of the cornea and then the linear wave propagation problem to reproduce the measurements. We investigate the impact of material anisotropy and prestress on wave propagation and demonstrate that intraocular pressure critically influences shear wave velocity. Additionally, by introducing a localized mechanical defect to simulate a pathological defect, we show that simulated shear wave can detect and quantify mechanical weaknesses, suggesting potential as a diagnostic tool to assess corneal health.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106363"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element modeling of transient shear wave elastography for the cornea\",\"authors\":\"Giulia Merlini ,&nbsp;Sebastien Imperiale ,&nbsp;Jean-Marc Allain\",\"doi\":\"10.1016/j.jmps.2025.106363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in dynamic elastography have enabled rapid, localized, and non-invasive mechanical data acquisition of the cornea. This data opens the path to early-detection of pathologies and more accurate treatment. However, the analysis of the wave propagation is a complex mechanical problem: the cornea is a structure under pressure, with non-linear material behavior. Thus, computational analysis are needed to extract mechanical parameters from the data. In this study, we present a time-dependent finite element model for the reproduction of transient shear wave elastographic measurements in the cornea. The mechanical problem consists in a small-amplitude wave propagating in the cornea, largely deformed by intraocular pressure in physiological conditions. The model accounts for anisotropic, hyperelastic, and incompressible behavior of the cornea, as well as its accurate geometry and preloaded condition. We have implemented two different numerical approaches to solve first the static non-linear inflation of the cornea and then the linear wave propagation problem to reproduce the measurements. We investigate the impact of material anisotropy and prestress on wave propagation and demonstrate that intraocular pressure critically influences shear wave velocity. Additionally, by introducing a localized mechanical defect to simulate a pathological defect, we show that simulated shear wave can detect and quantify mechanical weaknesses, suggesting potential as a diagnostic tool to assess corneal health.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"206 \",\"pages\":\"Article 106363\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625003370\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003370","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

动态弹性成像的最新进展使角膜的快速、局部和非侵入性的机械数据采集成为可能。这些数据为早期发现病理和更准确的治疗开辟了道路。然而,角膜的波传播分析是一个复杂的力学问题:角膜是一个受压力的结构,具有非线性的材料行为。因此,需要通过计算分析从数据中提取力学参数。在这项研究中,我们提出了一个时间相关的有限元模型,用于再现角膜中的瞬态横波弹性测量。机械问题包括在角膜内传播的小振幅波,在生理条件下很大程度上由于眼压而变形。该模型考虑了角膜的各向异性、超弹性和不可压缩行为,以及其精确的几何形状和预加载条件。我们采用了两种不同的数值方法来解决角膜的静态非线性膨胀和线性波传播问题,以重现测量结果。我们研究了材料各向异性和预应力对波传播的影响,并证明眼压对横波速度有重要影响。此外,通过引入局部机械缺陷来模拟病理缺陷,我们表明模拟剪切波可以检测和量化机械缺陷,表明作为评估角膜健康的诊断工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element modeling of transient shear wave elastography for the cornea
Recent advances in dynamic elastography have enabled rapid, localized, and non-invasive mechanical data acquisition of the cornea. This data opens the path to early-detection of pathologies and more accurate treatment. However, the analysis of the wave propagation is a complex mechanical problem: the cornea is a structure under pressure, with non-linear material behavior. Thus, computational analysis are needed to extract mechanical parameters from the data. In this study, we present a time-dependent finite element model for the reproduction of transient shear wave elastographic measurements in the cornea. The mechanical problem consists in a small-amplitude wave propagating in the cornea, largely deformed by intraocular pressure in physiological conditions. The model accounts for anisotropic, hyperelastic, and incompressible behavior of the cornea, as well as its accurate geometry and preloaded condition. We have implemented two different numerical approaches to solve first the static non-linear inflation of the cornea and then the linear wave propagation problem to reproduce the measurements. We investigate the impact of material anisotropy and prestress on wave propagation and demonstrate that intraocular pressure critically influences shear wave velocity. Additionally, by introducing a localized mechanical defect to simulate a pathological defect, we show that simulated shear wave can detect and quantify mechanical weaknesses, suggesting potential as a diagnostic tool to assess corneal health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信