Shuang Zhao , Wujie Guo , Guoye Yang , Peng Hu , Yidi Liu , Liang Chen , Shiping Ning , Xiaoying Cao , Yanfei Pan , Jiahua Shi , Wei Jiang , Decheng Lu , Huiqiao Huang
{"title":"具有级联催化抗菌性能的双响应葡萄糖/pH可降解纳米酶水凝胶用于糖尿病感染伤口治疗","authors":"Shuang Zhao , Wujie Guo , Guoye Yang , Peng Hu , Yidi Liu , Liang Chen , Shiping Ning , Xiaoying Cao , Yanfei Pan , Jiahua Shi , Wei Jiang , Decheng Lu , Huiqiao Huang","doi":"10.1016/j.nantod.2025.102906","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wound infections often lead to excessive inflammation, resulting in chronic or non-healing wounds. Effectively addressing the unique characteristics of the wound microenvironment for precise and safe treatment remains a significant challenge. In this work, we report the construction of novel, capsule-like natural glucose oxidase (GO<sub>x</sub>)-loaded metal-phenolic nanozymes (GO<sub>x</sub>-Zn<sup>2+</sup>/Cu<sup>2+</sup>-TA-VO<sub>x</sub>, GZ-TA-VO<sub>x</sub>), which is anchored to a pH/glucose dual-responsive degradable hydrogel composed of poly(vinyl alcohol) (PVA) and phenylboronic-acid-grafted sodium alginate (SA-PBA) for managing bacterial infections in diabetic wounds. The GZ-TA-VO<sub>x</sub> nanozymes exhibit efficient peroxidase (POD)-like and glutathione peroxidase (GPx)-like activities, as well as photothermal antibacterial properties. Additionally, the GO<sub>x</sub> in GZ-TA-VO<sub>x</sub> consumes glucose, producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and gluconic acid, which ameliorates hyperglycemia at the wound site and enhances the catalytic activity of the GZ-TA-VO<sub>x</sub> nanozymes. Encapsulation in a PVA/SA-PBA hydrogel provides tissue adhesion, self-healing, and degradable properties, enabling controlled drug release and synergistic effects for enhanced wound healing. <em>In vivo</em> experiments demonstrated that the GZ-TA-VO<sub>x</sub> hydrogel effectively alleviated inflammation, promoted angiogenesis and epithelial cell proliferation, and facilitated wound recovery, highlighting its potential for managing diabetic wounds. Overall, this work introduces a new synthesis approach for metal-phenolic nanozymes and presents a promising strategy for treating bacterial-infected diabetic wounds.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"66 ","pages":"Article 102906"},"PeriodicalIF":10.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-responsive glucose/pH degradable nanozyme hydrogel with cascade catalytic antibacterial performance for infected diabetic wound treatment\",\"authors\":\"Shuang Zhao , Wujie Guo , Guoye Yang , Peng Hu , Yidi Liu , Liang Chen , Shiping Ning , Xiaoying Cao , Yanfei Pan , Jiahua Shi , Wei Jiang , Decheng Lu , Huiqiao Huang\",\"doi\":\"10.1016/j.nantod.2025.102906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic wound infections often lead to excessive inflammation, resulting in chronic or non-healing wounds. Effectively addressing the unique characteristics of the wound microenvironment for precise and safe treatment remains a significant challenge. In this work, we report the construction of novel, capsule-like natural glucose oxidase (GO<sub>x</sub>)-loaded metal-phenolic nanozymes (GO<sub>x</sub>-Zn<sup>2+</sup>/Cu<sup>2+</sup>-TA-VO<sub>x</sub>, GZ-TA-VO<sub>x</sub>), which is anchored to a pH/glucose dual-responsive degradable hydrogel composed of poly(vinyl alcohol) (PVA) and phenylboronic-acid-grafted sodium alginate (SA-PBA) for managing bacterial infections in diabetic wounds. The GZ-TA-VO<sub>x</sub> nanozymes exhibit efficient peroxidase (POD)-like and glutathione peroxidase (GPx)-like activities, as well as photothermal antibacterial properties. Additionally, the GO<sub>x</sub> in GZ-TA-VO<sub>x</sub> consumes glucose, producing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and gluconic acid, which ameliorates hyperglycemia at the wound site and enhances the catalytic activity of the GZ-TA-VO<sub>x</sub> nanozymes. Encapsulation in a PVA/SA-PBA hydrogel provides tissue adhesion, self-healing, and degradable properties, enabling controlled drug release and synergistic effects for enhanced wound healing. <em>In vivo</em> experiments demonstrated that the GZ-TA-VO<sub>x</sub> hydrogel effectively alleviated inflammation, promoted angiogenesis and epithelial cell proliferation, and facilitated wound recovery, highlighting its potential for managing diabetic wounds. Overall, this work introduces a new synthesis approach for metal-phenolic nanozymes and presents a promising strategy for treating bacterial-infected diabetic wounds.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"66 \",\"pages\":\"Article 102906\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013225002786\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002786","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-responsive glucose/pH degradable nanozyme hydrogel with cascade catalytic antibacterial performance for infected diabetic wound treatment
Diabetic wound infections often lead to excessive inflammation, resulting in chronic or non-healing wounds. Effectively addressing the unique characteristics of the wound microenvironment for precise and safe treatment remains a significant challenge. In this work, we report the construction of novel, capsule-like natural glucose oxidase (GOx)-loaded metal-phenolic nanozymes (GOx-Zn2+/Cu2+-TA-VOx, GZ-TA-VOx), which is anchored to a pH/glucose dual-responsive degradable hydrogel composed of poly(vinyl alcohol) (PVA) and phenylboronic-acid-grafted sodium alginate (SA-PBA) for managing bacterial infections in diabetic wounds. The GZ-TA-VOx nanozymes exhibit efficient peroxidase (POD)-like and glutathione peroxidase (GPx)-like activities, as well as photothermal antibacterial properties. Additionally, the GOx in GZ-TA-VOx consumes glucose, producing hydrogen peroxide (H2O2) and gluconic acid, which ameliorates hyperglycemia at the wound site and enhances the catalytic activity of the GZ-TA-VOx nanozymes. Encapsulation in a PVA/SA-PBA hydrogel provides tissue adhesion, self-healing, and degradable properties, enabling controlled drug release and synergistic effects for enhanced wound healing. In vivo experiments demonstrated that the GZ-TA-VOx hydrogel effectively alleviated inflammation, promoted angiogenesis and epithelial cell proliferation, and facilitated wound recovery, highlighting its potential for managing diabetic wounds. Overall, this work introduces a new synthesis approach for metal-phenolic nanozymes and presents a promising strategy for treating bacterial-infected diabetic wounds.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.