高密度雷达网双偏振参数的三维拼接方法

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Zhe Li , Chong Wu , Liping Liu , Yijun Zhang , Chao Chen
{"title":"高密度雷达网双偏振参数的三维拼接方法","authors":"Zhe Li ,&nbsp;Chong Wu ,&nbsp;Liping Liu ,&nbsp;Yijun Zhang ,&nbsp;Chao Chen","doi":"10.1016/j.atmosres.2025.108494","DOIUrl":null,"url":null,"abstract":"<div><div>A multiradar mosaic is a key solution to the insufficient detection range of a single radar. In the traditional grid-preprocessed mosaicking method (GPM), radar polar coordinate data are interpolated into Cartesian grids to compensate for vertically undersampled regions in radar volume scans. However, such interpolation fails to accurately reconstruct the polarization parameters in these regions. Therefore, this study presentss a polar coordinate direct-mosaicking method (PDM) for the high-density radar network in South China, which directly operates on polar coordinate data and avoids initial interpolation. Based on typical precipitation cases from May to August 2021, three key issues in the PDM are addressed: First, horizontal reflectivity (<em>Z</em><sub>H</sub>) biases and differential reflectivity (<em>Z</em><sub>DR</sub>) offsets are corrected; second, the number of radars in the mosaicking process is evaluated, with five radars determined to be optimal; and third, the weights of different radar data are optimized by considering vertical and horizontal distances, along with the melting layer position. Compared with the GPM, the PDM yields a more accurate representation of the melting layer, with a smaller mean height error (192 m compared with 470 m) and a more realistic estimation of thickness (661 m compared with 1507 m). It also improves the continuity of polarimetric parameters within convective core regions. The case studies indicate that the PDM enables earlier identification of <em>Z</em><sub>DR</sub> columns and more accurate estimation of their heights. These results demonstrate that the PDM improves the accuracy of polarization parameter mosaics and offers potential for future applications in cloud microphysics research.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"329 ","pages":"Article 108494"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional mosaic method of dual-polarization parameters for a high-density radar network\",\"authors\":\"Zhe Li ,&nbsp;Chong Wu ,&nbsp;Liping Liu ,&nbsp;Yijun Zhang ,&nbsp;Chao Chen\",\"doi\":\"10.1016/j.atmosres.2025.108494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A multiradar mosaic is a key solution to the insufficient detection range of a single radar. In the traditional grid-preprocessed mosaicking method (GPM), radar polar coordinate data are interpolated into Cartesian grids to compensate for vertically undersampled regions in radar volume scans. However, such interpolation fails to accurately reconstruct the polarization parameters in these regions. Therefore, this study presentss a polar coordinate direct-mosaicking method (PDM) for the high-density radar network in South China, which directly operates on polar coordinate data and avoids initial interpolation. Based on typical precipitation cases from May to August 2021, three key issues in the PDM are addressed: First, horizontal reflectivity (<em>Z</em><sub>H</sub>) biases and differential reflectivity (<em>Z</em><sub>DR</sub>) offsets are corrected; second, the number of radars in the mosaicking process is evaluated, with five radars determined to be optimal; and third, the weights of different radar data are optimized by considering vertical and horizontal distances, along with the melting layer position. Compared with the GPM, the PDM yields a more accurate representation of the melting layer, with a smaller mean height error (192 m compared with 470 m) and a more realistic estimation of thickness (661 m compared with 1507 m). It also improves the continuity of polarimetric parameters within convective core regions. The case studies indicate that the PDM enables earlier identification of <em>Z</em><sub>DR</sub> columns and more accurate estimation of their heights. These results demonstrate that the PDM improves the accuracy of polarization parameter mosaics and offers potential for future applications in cloud microphysics research.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"329 \",\"pages\":\"Article 108494\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809525005861\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525005861","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多雷达拼接是解决单雷达探测距离不足的关键技术。在传统的网格预处理拼接方法(GPM)中,雷达极坐标数据被插值到笛卡尔网格中,以补偿雷达体扫描中垂直欠采样区域。然而,这种插值不能准确地重建这些区域的极化参数。为此,本研究提出了一种适用于华南高密度雷达网的极坐标直接拼接方法(PDM),该方法直接处理极坐标数据,避免了初始插值。基于2021年5 - 8月的典型降水案例,解决了PDM中的三个关键问题:首先,对水平反射率(ZH)偏差和差分反射率(ZDR)偏移进行了校正;其次,评估拼接过程中雷达的数量,确定5个雷达为最优;第三,考虑垂直距离和水平距离以及熔化层位置,优化不同雷达数据的权重。与GPM相比,PDM可以更准确地表示熔化层,平均高度误差更小(192 m与470 m相比),厚度估计更真实(661 m与1507 m相比)。它还提高了对流核心区极化参数的连续性。案例研究表明,PDM可以更早地识别ZDR柱,并更准确地估计其高度。这些结果表明PDM提高了偏振参数拼接的精度,为未来云微物理研究提供了潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional mosaic method of dual-polarization parameters for a high-density radar network
A multiradar mosaic is a key solution to the insufficient detection range of a single radar. In the traditional grid-preprocessed mosaicking method (GPM), radar polar coordinate data are interpolated into Cartesian grids to compensate for vertically undersampled regions in radar volume scans. However, such interpolation fails to accurately reconstruct the polarization parameters in these regions. Therefore, this study presentss a polar coordinate direct-mosaicking method (PDM) for the high-density radar network in South China, which directly operates on polar coordinate data and avoids initial interpolation. Based on typical precipitation cases from May to August 2021, three key issues in the PDM are addressed: First, horizontal reflectivity (ZH) biases and differential reflectivity (ZDR) offsets are corrected; second, the number of radars in the mosaicking process is evaluated, with five radars determined to be optimal; and third, the weights of different radar data are optimized by considering vertical and horizontal distances, along with the melting layer position. Compared with the GPM, the PDM yields a more accurate representation of the melting layer, with a smaller mean height error (192 m compared with 470 m) and a more realistic estimation of thickness (661 m compared with 1507 m). It also improves the continuity of polarimetric parameters within convective core regions. The case studies indicate that the PDM enables earlier identification of ZDR columns and more accurate estimation of their heights. These results demonstrate that the PDM improves the accuracy of polarization parameter mosaics and offers potential for future applications in cloud microphysics research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信