{"title":"MamGA:基于mamba和深度关注层的双通道并行月径流预测的深度神经网络架构","authors":"Wen-chuan Wang , Wei-can Tian , Ming-lei Ren , Dong-mei Xu","doi":"10.1016/j.jhydrol.2025.134304","DOIUrl":null,"url":null,"abstract":"<div><div>Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"663 ","pages":"Article 134304"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer\",\"authors\":\"Wen-chuan Wang , Wei-can Tian , Ming-lei Ren , Dong-mei Xu\",\"doi\":\"10.1016/j.jhydrol.2025.134304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"663 \",\"pages\":\"Article 134304\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425016440\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425016440","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
MamGA: a deep neural network architecture for dual-channel parallel monthly runoff prediction based on mamba and depth-gated attention layer
Monthly runoff prediction is crucial in water resource management, involving both short-term hydrological dynamics and long-term planning. It has a decisive impact on flood prevention, resource allocation, and ecological protection. In the context of increasing uncertainties in runoff due to climate change and human activities, accurate monthly runoff forecasting becomes even more essential. Therefore, this paper proposes a novel dual-channel parallel monthly runoff prediction deep neural network architecture—MamGA—built on the significant application value of deep neural networks in runoff prediction. The architecture first introduces the Mamba model, which employs a selection mechanism to achieve selective information propagation and suppression, effectively enhancing the processing capability of global feature information while reducing the computational complexity of modelling long sequences. Furthermore, this paper incorporates a Depth-gated Attention Layer that combines bidirectional depth-gated modules and linear attention mechanisms to address the shortcomings of the Mamba network in unidirectional information processing. Integrating an Embedded Coding layer and a Sequential Decoding layer constructs an efficient coding and decoding system, further strengthening the model’s ability to capture global features and temporal information. To validate the effectiveness and advancement of the MamGA model, this study selected the Manwan Station (MW), Xiaowan Station (XW) in China, and the Thunder Creek Station (TC) in the United States as experimental subjects. Five evaluation metrics were employed for comparative analysis against nine benchmark models. The experimental results indicate that the MamGA model exhibits significant superiority across all cases. For instance, at the MW station, compared to the Long Short-Term Memory (LSTM) model, the MamGA model reduced the Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE) by 33.08% and 23.93%, respectively. Meanwhile, the Nash Efficiency Coefficient (NSE), correlation coefficient (R), and Kling-Gupta Efficiency (KGE) improved by 8.41%, 3.93%, and 8.36%, respectively, with both R and NSE exceeding 0.9. The MamGA model also demonstrated significant performance improvements at other stations compared to the competing models. The study suggests that the MamGA model, as an advanced tool for monthly runoff prediction, can significantly enhance the accuracy of runoff forecasting, providing robust support for the optimal allocation and management of water resources.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.