{"title":"火灾烟气控制的声学聚块:最新进展","authors":"Guangxue Zhang, Ziyue Chen, Sirui Tong, Dingkun Yuan, Yunchao Li, Jiangrong Xu","doi":"10.1016/j.partic.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing complexity of urban buildings has significantly heightened fire risks, posing serious threats to public safety. In the event of a fire, smoke particles scatter and absorb light, drastically reducing visibility and greatly endangering trapped individuals. Existing smoke control methods face notable limitations. Natural ventilation is susceptible to environmental conditions. Solid obstructions such as firewalls can impede evacuation. Fine water mist may remain suspended in air and reduce visibility. Moreover, these approaches do not directly control smoke particles, so there is a need for innovative solutions. Acoustic agglomeration, which leverages high-intensity acoustic fields to induce relative motion among smoke particles and facilitate rapid agglomeration, is a promising technology for improving visibility in smoke-filled environments. It operates independently of ambient conditions, does not require solid barriers, and introduces no additional particles, which underscores its advantages for evacuation and rescue. This review synthesizes the development, mechanisms, operating parameters, sound sources, and hybrid strategies of acoustic agglomeration for fire smoke control, identifies remaining gaps, and assesses feasibility. The insights are intended to support researchers and decision-makers in advancing more effective smoke control strategies.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"106 ","pages":"Pages 261-274"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic agglomeration for fire smoke control: A state-of-the-art review\",\"authors\":\"Guangxue Zhang, Ziyue Chen, Sirui Tong, Dingkun Yuan, Yunchao Li, Jiangrong Xu\",\"doi\":\"10.1016/j.partic.2025.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing complexity of urban buildings has significantly heightened fire risks, posing serious threats to public safety. In the event of a fire, smoke particles scatter and absorb light, drastically reducing visibility and greatly endangering trapped individuals. Existing smoke control methods face notable limitations. Natural ventilation is susceptible to environmental conditions. Solid obstructions such as firewalls can impede evacuation. Fine water mist may remain suspended in air and reduce visibility. Moreover, these approaches do not directly control smoke particles, so there is a need for innovative solutions. Acoustic agglomeration, which leverages high-intensity acoustic fields to induce relative motion among smoke particles and facilitate rapid agglomeration, is a promising technology for improving visibility in smoke-filled environments. It operates independently of ambient conditions, does not require solid barriers, and introduces no additional particles, which underscores its advantages for evacuation and rescue. This review synthesizes the development, mechanisms, operating parameters, sound sources, and hybrid strategies of acoustic agglomeration for fire smoke control, identifies remaining gaps, and assesses feasibility. The insights are intended to support researchers and decision-makers in advancing more effective smoke control strategies.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"106 \",\"pages\":\"Pages 261-274\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125002500\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002500","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Acoustic agglomeration for fire smoke control: A state-of-the-art review
The increasing complexity of urban buildings has significantly heightened fire risks, posing serious threats to public safety. In the event of a fire, smoke particles scatter and absorb light, drastically reducing visibility and greatly endangering trapped individuals. Existing smoke control methods face notable limitations. Natural ventilation is susceptible to environmental conditions. Solid obstructions such as firewalls can impede evacuation. Fine water mist may remain suspended in air and reduce visibility. Moreover, these approaches do not directly control smoke particles, so there is a need for innovative solutions. Acoustic agglomeration, which leverages high-intensity acoustic fields to induce relative motion among smoke particles and facilitate rapid agglomeration, is a promising technology for improving visibility in smoke-filled environments. It operates independently of ambient conditions, does not require solid barriers, and introduces no additional particles, which underscores its advantages for evacuation and rescue. This review synthesizes the development, mechanisms, operating parameters, sound sources, and hybrid strategies of acoustic agglomeration for fire smoke control, identifies remaining gaps, and assesses feasibility. The insights are intended to support researchers and decision-makers in advancing more effective smoke control strategies.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.