{"title":"(INV)条件和逆的规律","authors":"Anna Doležalová , Stanislav Hencl , Jani Onninen","doi":"10.1016/j.jfa.2025.111215","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> be a Sobolev mapping of finite distortion between planar domains Ω and <span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, satisfying the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition and coinciding with a homeomorphism near ∂Ω. We show that <em>f</em> admits a generalized inverse mapping <span><math><mi>h</mi><mo>:</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>→</mo><mi>Ω</mi></math></span>, which is also a Sobolev mapping of finite distortion and satisfies the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition.</div><div>We also establish a higher-dimensional analogue of this result: if a mapping <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of finite distortion is in the Sobolev class <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>></mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> and satisfies the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition, then <em>f</em> has an inverse in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> that is also of finite distortion.</div><div>Furthermore, we characterize Sobolev mappings satisfying <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> whose generalized inverses have finite <em>n</em>-harmonic energy.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111215"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(INV) condition and regularity of the inverse\",\"authors\":\"Anna Doležalová , Stanislav Hencl , Jani Onninen\",\"doi\":\"10.1016/j.jfa.2025.111215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> be a Sobolev mapping of finite distortion between planar domains Ω and <span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, satisfying the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition and coinciding with a homeomorphism near ∂Ω. We show that <em>f</em> admits a generalized inverse mapping <span><math><mi>h</mi><mo>:</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>→</mo><mi>Ω</mi></math></span>, which is also a Sobolev mapping of finite distortion and satisfies the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition.</div><div>We also establish a higher-dimensional analogue of this result: if a mapping <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of finite distortion is in the Sobolev class <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>></mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> and satisfies the <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> condition, then <em>f</em> has an inverse in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> that is also of finite distortion.</div><div>Furthermore, we characterize Sobolev mappings satisfying <span><math><mo>(</mo><mi>I</mi><mi>N</mi><mi>V</mi><mo>)</mo></math></span> whose generalized inverses have finite <em>n</em>-harmonic energy.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111215\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003970\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003970","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let be a Sobolev mapping of finite distortion between planar domains Ω and , satisfying the condition and coinciding with a homeomorphism near ∂Ω. We show that f admits a generalized inverse mapping , which is also a Sobolev mapping of finite distortion and satisfies the condition.
We also establish a higher-dimensional analogue of this result: if a mapping of finite distortion is in the Sobolev class with and satisfies the condition, then f has an inverse in that is also of finite distortion.
Furthermore, we characterize Sobolev mappings satisfying whose generalized inverses have finite n-harmonic energy.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis