{"title":"拉普拉斯G2流下的曲率捏缩估计","authors":"Chuanhuan Li , Yi Li","doi":"10.1016/j.jfa.2025.111199","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we derive a pinching estimate for the traceless Ricci curvature in terms of scalar curvature and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor under the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow for closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures. Then we apply this estimate to study the long time existence of the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow and prove that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor has to blow up at least at a certain rate under bounded scalar curvature.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111199"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature pinching estimate under the Laplacian G2 flow\",\"authors\":\"Chuanhuan Li , Yi Li\",\"doi\":\"10.1016/j.jfa.2025.111199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we derive a pinching estimate for the traceless Ricci curvature in terms of scalar curvature and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor under the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow for closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures. Then we apply this estimate to study the long time existence of the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow and prove that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor has to blow up at least at a certain rate under bounded scalar curvature.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111199\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003817\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003817","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Curvature pinching estimate under the Laplacian G2 flow
In this paper, we derive a pinching estimate for the traceless Ricci curvature in terms of scalar curvature and the norm of the Weyl tensor under the Laplacian flow for closed structures. Then we apply this estimate to study the long time existence of the Laplacian flow and prove that the norm of the Weyl tensor has to blow up at least at a certain rate under bounded scalar curvature.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis