具有结构增强和能量吸收梯度的FCC支撑板晶格的系统数值设计

IF 7.1 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Mohamed Abdelmageed , Ibrahim H. ZainElabdeen , Kamran A. Khan , Wael Zaki , Wesley Cantwell
{"title":"具有结构增强和能量吸收梯度的FCC支撑板晶格的系统数值设计","authors":"Mohamed Abdelmageed ,&nbsp;Ibrahim H. ZainElabdeen ,&nbsp;Kamran A. Khan ,&nbsp;Wael Zaki ,&nbsp;Wesley Cantwell","doi":"10.1016/j.compstruct.2025.119677","DOIUrl":null,"url":null,"abstract":"<div><div>In structural engineering and protective applications, efficient energy-absorbing materials are essential. Additively manufactured plate lattices are promising due to their high stiffness-to-density ratio. This study presents a numerical analysis of three basic plate lattices, simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC), under large-strain quasi-static compression. The effects of unit cell count, relative density, and axial grading on energy absorption and stability are investigated. Hybrid structures combining two or three lattice types are also studied across various component ratios. Based on the findings, a new design combining FCC with vertical supports is proposed. Numerical results are validated through experiments on FCC, BCC, and the binary-hybrid FCC + BCC lattices, showing good agreement in force response and deformation patterns. The SC structure achieves the highest specific energy absorption (SEA) but suffers from poor stability due to vertical walls, while the FCC offers the best stability. Integrating 70 % SC into FCC or BCC enhances SEA but reduces structural stability. The proposed hybrid structure outperforms all others, achieving 30 % higher SEA than FCC alone while maintaining stable deformation. Axial grading further boosts SEA by 11.6 %. This work demonstrates a pathway to optimizing both energy absorption and mechanical stability in lattice-based materials.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119677"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic numerical design of a supported FCC plate lattice with structural reinforcement and gradation for energy absorption\",\"authors\":\"Mohamed Abdelmageed ,&nbsp;Ibrahim H. ZainElabdeen ,&nbsp;Kamran A. Khan ,&nbsp;Wael Zaki ,&nbsp;Wesley Cantwell\",\"doi\":\"10.1016/j.compstruct.2025.119677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In structural engineering and protective applications, efficient energy-absorbing materials are essential. Additively manufactured plate lattices are promising due to their high stiffness-to-density ratio. This study presents a numerical analysis of three basic plate lattices, simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC), under large-strain quasi-static compression. The effects of unit cell count, relative density, and axial grading on energy absorption and stability are investigated. Hybrid structures combining two or three lattice types are also studied across various component ratios. Based on the findings, a new design combining FCC with vertical supports is proposed. Numerical results are validated through experiments on FCC, BCC, and the binary-hybrid FCC + BCC lattices, showing good agreement in force response and deformation patterns. The SC structure achieves the highest specific energy absorption (SEA) but suffers from poor stability due to vertical walls, while the FCC offers the best stability. Integrating 70 % SC into FCC or BCC enhances SEA but reduces structural stability. The proposed hybrid structure outperforms all others, achieving 30 % higher SEA than FCC alone while maintaining stable deformation. Axial grading further boosts SEA by 11.6 %. This work demonstrates a pathway to optimizing both energy absorption and mechanical stability in lattice-based materials.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"373 \",\"pages\":\"Article 119677\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325008426\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008426","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在结构工程和防护应用中,高效的吸能材料是必不可少的。增材制造的板格由于具有较高的刚度密度比而具有广阔的应用前景。本文对大应变准静态压缩条件下的简单立方(SC)、体心立方(BCC)和面心立方(FCC)三种基本板格进行了数值分析。研究了晶胞数、相对密度和轴向分级对能量吸收和稳定性的影响。结合两种或三种晶格类型的杂化结构也在不同的成分比下进行了研究。在此基础上,提出了FCC与垂直支撑相结合的设计方案。通过FCC、BCC和二元混合FCC + BCC晶格的实验验证了数值结果,表明两者在力响应和变形模式上有很好的一致性。SC结构实现了最高的比能量吸收(SEA),但由于垂直壁的影响,稳定性较差,而FCC结构提供了最好的稳定性。将70%的SC集成到FCC或BCC中提高了SEA,但降低了结构稳定性。所提出的混合结构优于所有其他结构,在保持稳定变形的同时,其SEA比单独的FCC高30%。轴向分级进一步提高了11.6%的SEA。这项工作展示了优化晶格基材料的能量吸收和机械稳定性的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systematic numerical design of a supported FCC plate lattice with structural reinforcement and gradation for energy absorption
In structural engineering and protective applications, efficient energy-absorbing materials are essential. Additively manufactured plate lattices are promising due to their high stiffness-to-density ratio. This study presents a numerical analysis of three basic plate lattices, simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC), under large-strain quasi-static compression. The effects of unit cell count, relative density, and axial grading on energy absorption and stability are investigated. Hybrid structures combining two or three lattice types are also studied across various component ratios. Based on the findings, a new design combining FCC with vertical supports is proposed. Numerical results are validated through experiments on FCC, BCC, and the binary-hybrid FCC + BCC lattices, showing good agreement in force response and deformation patterns. The SC structure achieves the highest specific energy absorption (SEA) but suffers from poor stability due to vertical walls, while the FCC offers the best stability. Integrating 70 % SC into FCC or BCC enhances SEA but reduces structural stability. The proposed hybrid structure outperforms all others, achieving 30 % higher SEA than FCC alone while maintaining stable deformation. Axial grading further boosts SEA by 11.6 %. This work demonstrates a pathway to optimizing both energy absorption and mechanical stability in lattice-based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信