低应变率对CFRP复合材料在海水中湿热暴露后强度的影响

IF 7.1 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Haiwei Zhan , Jiayu Wu , Jian-Fei Chen
{"title":"低应变率对CFRP复合材料在海水中湿热暴露后强度的影响","authors":"Haiwei Zhan ,&nbsp;Jiayu Wu ,&nbsp;Jian-Fei Chen","doi":"10.1016/j.compstruct.2025.119663","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a study on the effect of strain rate on the strength of carbon fiber reinforced polymer (CFRP) laminates after hygrothermal exposure in seawater at 60 °C. A ten-month water absorption test was conducted on CFRP immersed in 60 °C seawater, and its non-Fickian moisture uptake behavior was accurately modeled using a Weibull relaxation model optimized by particle swarm optimization (PSO). Tensile tests were conducted on CFRP specimens subjected to varying seawater aging durations (0, 35, 70, and 105 days) at different strain rates (from 10<sup>−7</sup> to 10<sup>−3</sup> s<sup>−1</sup>). The experimental results indicate that the strength of CFRP increases with an increase in strain rate, regardless of whether the material has undergone seawater aging. It decreases with aging time until reaching water absorption saturation across all test strain rates, but increases slightly after saturation. A two-way analysis of variance (ANOVA) was innovatively applied to assess the interaction effects of strain rate and aging time on CFRP strength. The results confirmed that both factors are statistically independent, offering a novel and quantitative perspective on the mechanical-environmental coupling effects. Finally, an empirical model is developed to represent the strengths of CFRP at different strain rates following hygrothermal exposure.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119663"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of low strain rate on the strength of CFRP laminates after hygrothermal exposure in seawater\",\"authors\":\"Haiwei Zhan ,&nbsp;Jiayu Wu ,&nbsp;Jian-Fei Chen\",\"doi\":\"10.1016/j.compstruct.2025.119663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a study on the effect of strain rate on the strength of carbon fiber reinforced polymer (CFRP) laminates after hygrothermal exposure in seawater at 60 °C. A ten-month water absorption test was conducted on CFRP immersed in 60 °C seawater, and its non-Fickian moisture uptake behavior was accurately modeled using a Weibull relaxation model optimized by particle swarm optimization (PSO). Tensile tests were conducted on CFRP specimens subjected to varying seawater aging durations (0, 35, 70, and 105 days) at different strain rates (from 10<sup>−7</sup> to 10<sup>−3</sup> s<sup>−1</sup>). The experimental results indicate that the strength of CFRP increases with an increase in strain rate, regardless of whether the material has undergone seawater aging. It decreases with aging time until reaching water absorption saturation across all test strain rates, but increases slightly after saturation. A two-way analysis of variance (ANOVA) was innovatively applied to assess the interaction effects of strain rate and aging time on CFRP strength. The results confirmed that both factors are statistically independent, offering a novel and quantitative perspective on the mechanical-environmental coupling effects. Finally, an empirical model is developed to represent the strengths of CFRP at different strain rates following hygrothermal exposure.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"373 \",\"pages\":\"Article 119663\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325008281\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了应变速率对碳纤维增强聚合物(CFRP)层合板在60℃海水中湿热暴露后强度的影响。对CFRP在60°C海水中浸泡10个月的吸水试验,采用粒子群优化的Weibull松弛模型对CFRP的非菲克吸湿行为进行了精确建模。在不同应变速率(从10−7到10−3 s−1)下,对CFRP试件进行了不同海水老化时间(0、35、70和105天)的拉伸试验。实验结果表明,无论材料是否经历海水老化,CFRP的强度都随着应变速率的增加而增加。在所有试验应变率下,吸水率随时效时间的延长而减小,直至达到吸水饱和,但在饱和后略有增加。创新地采用双向方差分析(ANOVA)来评估应变率和老化时间对CFRP强度的交互影响。结果证实了这两个因素在统计上是独立的,为研究机械-环境耦合效应提供了一个新的定量视角。最后,开发了一个经验模型来表示CFRP在不同应变率下的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of low strain rate on the strength of CFRP laminates after hygrothermal exposure in seawater
This paper presents a study on the effect of strain rate on the strength of carbon fiber reinforced polymer (CFRP) laminates after hygrothermal exposure in seawater at 60 °C. A ten-month water absorption test was conducted on CFRP immersed in 60 °C seawater, and its non-Fickian moisture uptake behavior was accurately modeled using a Weibull relaxation model optimized by particle swarm optimization (PSO). Tensile tests were conducted on CFRP specimens subjected to varying seawater aging durations (0, 35, 70, and 105 days) at different strain rates (from 10−7 to 10−3 s−1). The experimental results indicate that the strength of CFRP increases with an increase in strain rate, regardless of whether the material has undergone seawater aging. It decreases with aging time until reaching water absorption saturation across all test strain rates, but increases slightly after saturation. A two-way analysis of variance (ANOVA) was innovatively applied to assess the interaction effects of strain rate and aging time on CFRP strength. The results confirmed that both factors are statistically independent, offering a novel and quantitative perspective on the mechanical-environmental coupling effects. Finally, an empirical model is developed to represent the strengths of CFRP at different strain rates following hygrothermal exposure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信