液滴在冷板上凝固的数值模拟

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hongsheng Zhou , Min Lu , Peisheng Li , Lijun Ye , Fanghua Ye , Ruifeng Gao , Ying Zhang , Yuan Tian
{"title":"液滴在冷板上凝固的数值模拟","authors":"Hongsheng Zhou ,&nbsp;Min Lu ,&nbsp;Peisheng Li ,&nbsp;Lijun Ye ,&nbsp;Fanghua Ye ,&nbsp;Ruifeng Gao ,&nbsp;Ying Zhang ,&nbsp;Yuan Tian","doi":"10.1016/j.ijthermalsci.2025.110331","DOIUrl":null,"url":null,"abstract":"<div><div>We proposed a solidification model based on the Front-Tracking method to simulate the freezing of liquid droplets on a cold substrate. The model is validated through comparison with existing numerical and experimental results, demonstrating agreement and improved mass conservation relative to previous approaches. Subsequently,the model is employed to investigate droplet solidification dynamics by varying key parameters, including the initial contact angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), growth angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>g</mi><mi>r</mi></mrow></msub></math></span>), Stefan number (<span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>), Bond number (<span><math><mrow><mi>B</mi><mi>o</mi></mrow></math></span>), solid–liquid density ratio (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span>) and solid–liquid thermal conductivity ratio (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span>). The results reveal that, on hydrophobic surfaces, increasing the growth angle enhances circulation near the three-phase contact line, promoting upward liquid motion and yielding taller, more slender solidified morphologies. A higher Stefan number and <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span> accelerate solidification by driving faster interface propagation, while an increased Bond number facilitates horizontal spreading, enlarging the solidification interface and improving heat transfer with the substrate. The solid–liquid density ratio is found to significantly influence both solidification rate and morphological development. These insights offer valuable guidance for controlling droplet solidification on hydrophobic surfaces and have direct implications for anti-icing technologies in power systems and aerospace applications.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110331"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of droplet solidification on a cold plate\",\"authors\":\"Hongsheng Zhou ,&nbsp;Min Lu ,&nbsp;Peisheng Li ,&nbsp;Lijun Ye ,&nbsp;Fanghua Ye ,&nbsp;Ruifeng Gao ,&nbsp;Ying Zhang ,&nbsp;Yuan Tian\",\"doi\":\"10.1016/j.ijthermalsci.2025.110331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We proposed a solidification model based on the Front-Tracking method to simulate the freezing of liquid droplets on a cold substrate. The model is validated through comparison with existing numerical and experimental results, demonstrating agreement and improved mass conservation relative to previous approaches. Subsequently,the model is employed to investigate droplet solidification dynamics by varying key parameters, including the initial contact angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>), growth angle (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>g</mi><mi>r</mi></mrow></msub></math></span>), Stefan number (<span><math><mrow><mi>S</mi><mi>t</mi></mrow></math></span>), Bond number (<span><math><mrow><mi>B</mi><mi>o</mi></mrow></math></span>), solid–liquid density ratio (<span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span>) and solid–liquid thermal conductivity ratio (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span>). The results reveal that, on hydrophobic surfaces, increasing the growth angle enhances circulation near the three-phase contact line, promoting upward liquid motion and yielding taller, more slender solidified morphologies. A higher Stefan number and <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>s</mi><mi>l</mi></mrow></msub></math></span> accelerate solidification by driving faster interface propagation, while an increased Bond number facilitates horizontal spreading, enlarging the solidification interface and improving heat transfer with the substrate. The solid–liquid density ratio is found to significantly influence both solidification rate and morphological development. These insights offer valuable guidance for controlling droplet solidification on hydrophobic surfaces and have direct implications for anti-icing technologies in power systems and aerospace applications.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"220 \",\"pages\":\"Article 110331\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925006544\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925006544","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟液滴在冷基体上的凝固,提出了一种基于Front-Tracking方法的凝固模型。通过与现有的数值和实验结果的比较,验证了该模型的正确性,证明了相对于以前的方法的一致性和改进的质量守恒。随后,通过改变初始接触角(θ0)、生长角(θgr)、Stefan数(St)、键数(Bo)、固液密度比(χsl)和固液导热比(κsl)等关键参数,利用该模型研究了液滴的凝固动力学。结果表明,在疏水表面上,增大生长角可以增强三相接触线附近的循环,促进液体向上运动,形成更高、更细的凝固形态。较高的Stefan数和κsl通过加速界面扩展来加速凝固,而增加的Bond数有利于水平扩展,扩大凝固界面,改善与基体的传热。固液密度比对凝固速率和形态发展均有显著影响。这些见解为控制疏水表面上的液滴凝固提供了有价值的指导,并对电力系统和航空航天应用中的防冰技术具有直接意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of droplet solidification on a cold plate
We proposed a solidification model based on the Front-Tracking method to simulate the freezing of liquid droplets on a cold substrate. The model is validated through comparison with existing numerical and experimental results, demonstrating agreement and improved mass conservation relative to previous approaches. Subsequently,the model is employed to investigate droplet solidification dynamics by varying key parameters, including the initial contact angle (θ0), growth angle (θgr), Stefan number (St), Bond number (Bo), solid–liquid density ratio (χsl) and solid–liquid thermal conductivity ratio (κsl). The results reveal that, on hydrophobic surfaces, increasing the growth angle enhances circulation near the three-phase contact line, promoting upward liquid motion and yielding taller, more slender solidified morphologies. A higher Stefan number and κsl accelerate solidification by driving faster interface propagation, while an increased Bond number facilitates horizontal spreading, enlarging the solidification interface and improving heat transfer with the substrate. The solid–liquid density ratio is found to significantly influence both solidification rate and morphological development. These insights offer valuable guidance for controlling droplet solidification on hydrophobic surfaces and have direct implications for anti-icing technologies in power systems and aerospace applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信