高性能超级电容器用褐煤衍生多孔碳中羰基氧活性位点和微孔的协同调节

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL
Zhenming Cui , Hongwei Liu , Xiaokang An , Xin An , Zhennan Qiao , YongZhen Wang
{"title":"高性能超级电容器用褐煤衍生多孔碳中羰基氧活性位点和微孔的协同调节","authors":"Zhenming Cui ,&nbsp;Hongwei Liu ,&nbsp;Xiaokang An ,&nbsp;Xin An ,&nbsp;Zhennan Qiao ,&nbsp;YongZhen Wang","doi":"10.1016/j.jelechem.2025.119488","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen-rich porous carbon derived from low-rank lignite offers a cost-effective route to pseudocapacitive materials. Here, we integrate NaCl hard templating, freeze-drying, and KOH activation to construct oxygen-rich lignite-derived porous carbon (OLPC) with abundant micropores and high carbonyl oxygen content. Machine learning feature analysis and density functional theory (DFT) jointly reveal the critical roles of pore structure and carbonyl oxygen species in enhancing capacitive performance. The optimized OLPC-600 exhibits a high specific surface area (2132 m<sup>2</sup> g<sup>−1</sup>), a 71 % micropore ratio, and significant carbonyl oxygen content (6.18 % C<img>O). This material achieves a specific capacitance of 357 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and an energy density of 16.2 Wh kg<sup>−1</sup> at 275 W kg<sup>−1</sup> in a symmetric supercapacitor. The synergy between micropores and carbonyl functionalities accounts for this superior performance. These findings highlight a practical pathway for lignite valorization and provide a cost-effective strategy for designing high-performance carbon-based energy storage materials.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"997 ","pages":"Article 119488"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic regulation of carbonyl oxygen active sites and micropores in lignite-derived porous carbon for high-performance supercapacitors\",\"authors\":\"Zhenming Cui ,&nbsp;Hongwei Liu ,&nbsp;Xiaokang An ,&nbsp;Xin An ,&nbsp;Zhennan Qiao ,&nbsp;YongZhen Wang\",\"doi\":\"10.1016/j.jelechem.2025.119488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxygen-rich porous carbon derived from low-rank lignite offers a cost-effective route to pseudocapacitive materials. Here, we integrate NaCl hard templating, freeze-drying, and KOH activation to construct oxygen-rich lignite-derived porous carbon (OLPC) with abundant micropores and high carbonyl oxygen content. Machine learning feature analysis and density functional theory (DFT) jointly reveal the critical roles of pore structure and carbonyl oxygen species in enhancing capacitive performance. The optimized OLPC-600 exhibits a high specific surface area (2132 m<sup>2</sup> g<sup>−1</sup>), a 71 % micropore ratio, and significant carbonyl oxygen content (6.18 % C<img>O). This material achieves a specific capacitance of 357 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and an energy density of 16.2 Wh kg<sup>−1</sup> at 275 W kg<sup>−1</sup> in a symmetric supercapacitor. The synergy between micropores and carbonyl functionalities accounts for this superior performance. These findings highlight a practical pathway for lignite valorization and provide a cost-effective strategy for designing high-performance carbon-based energy storage materials.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"997 \",\"pages\":\"Article 119488\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665725005624\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725005624","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

从低阶褐煤中提取的富氧多孔碳为制备假电容材料提供了一种经济有效的途径。本文采用NaCl硬模板法、冷冻干燥法和KOH活化法制备了微孔丰富、羰基氧含量高的富氧褐煤衍生多孔碳(OLPC)。机器学习特征分析和密度泛函理论(DFT)共同揭示了孔隙结构和羰基氧在提高电容性能中的关键作用。优化后的OLPC-600具有较高的比表面积(2132 m2 g−1)、71%的微孔比和显著的羰基氧含量(6.18% CO)。在对称超级电容器中,该材料在0.5 a g−1时的比电容为357 F g−1,在275 W kg−1时的能量密度为16.2 Wh kg−1。微孔和羰基功能之间的协同作用说明了这种优越的性能。这些发现强调了褐煤增值的实用途径,并为设计高性能碳基储能材料提供了一种具有成本效益的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic regulation of carbonyl oxygen active sites and micropores in lignite-derived porous carbon for high-performance supercapacitors

Synergistic regulation of carbonyl oxygen active sites and micropores in lignite-derived porous carbon for high-performance supercapacitors
Oxygen-rich porous carbon derived from low-rank lignite offers a cost-effective route to pseudocapacitive materials. Here, we integrate NaCl hard templating, freeze-drying, and KOH activation to construct oxygen-rich lignite-derived porous carbon (OLPC) with abundant micropores and high carbonyl oxygen content. Machine learning feature analysis and density functional theory (DFT) jointly reveal the critical roles of pore structure and carbonyl oxygen species in enhancing capacitive performance. The optimized OLPC-600 exhibits a high specific surface area (2132 m2 g−1), a 71 % micropore ratio, and significant carbonyl oxygen content (6.18 % CO). This material achieves a specific capacitance of 357 F g−1 at 0.5 A g−1 and an energy density of 16.2 Wh kg−1 at 275 W kg−1 in a symmetric supercapacitor. The synergy between micropores and carbonyl functionalities accounts for this superior performance. These findings highlight a practical pathway for lignite valorization and provide a cost-effective strategy for designing high-performance carbon-based energy storage materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信