采用微管和外壳系统的圆柱形锂离子电池模块的间接液体冷却

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Mohammad Sadegh Sadeghian , Vahid Esfahanian , Mohammad Akrami , Hosein Shokouhmand , Reza Pasandeh , Erfan Zand , Mohammad Reza Afshar
{"title":"采用微管和外壳系统的圆柱形锂离子电池模块的间接液体冷却","authors":"Mohammad Sadegh Sadeghian ,&nbsp;Vahid Esfahanian ,&nbsp;Mohammad Akrami ,&nbsp;Hosein Shokouhmand ,&nbsp;Reza Pasandeh ,&nbsp;Erfan Zand ,&nbsp;Mohammad Reza Afshar","doi":"10.1016/j.ijheatmasstransfer.2025.127588","DOIUrl":null,"url":null,"abstract":"<div><div>Effective thermal management is essential for ensuring the safety and performance of lithium-ion batteries (LIBs) in electric vehicles (EVs). This study introduces an innovative liquid-cooled battery thermal management system (BTMS) for 18650-type cylindrical batteries, featuring microtubes (MCTs) embedded in a heat conduction block (HCB) combined with an aluminum housing structure. Through comprehensive numerical analysis, the effects of MCT quantity (2–16), housing thickness (0.5–2.5 mm), coolant mass flow rate (2.8 × 10<sup>-4</sup> <!-->to 1.4 × 10<sup>-3</sup> <!-->kg/s), and tube diameter (0.75–1.75 mm) on thermal performance are investigated. The system demonstrates exceptional cooling capability, maintaining the maximum temperature in the module (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>) below 35°C at 3C discharge with just four MCTs and a low flow rate of 2.8 × 10<sup>-4</sup> <!-->kg/s. The optimal configuration (10 MCTs, 0.5<!--> <!-->mm housing) achieves a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> of 30.37°C and a remarkably low maximum temperature difference between different batteries (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>) of 2.72°C; a 55.1% improvement over non-housed designs. Furthermore, increasing the tube diameter from 1<!--> <!-->mm to 1.75<!--> <!-->mm reduces pressure drop by 96<!--> <!-->% while maintaining compactness. This BTMS design outperforms conventional approaches by simultaneously optimizing thermal uniformity, energy efficiency, and manufacturability, offering a practical solution for next-generation EVs.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"255 ","pages":"Article 127588"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced indirect liquid cooling for cylindrical Lithium-ion battery module using microtubes and housing system\",\"authors\":\"Mohammad Sadegh Sadeghian ,&nbsp;Vahid Esfahanian ,&nbsp;Mohammad Akrami ,&nbsp;Hosein Shokouhmand ,&nbsp;Reza Pasandeh ,&nbsp;Erfan Zand ,&nbsp;Mohammad Reza Afshar\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective thermal management is essential for ensuring the safety and performance of lithium-ion batteries (LIBs) in electric vehicles (EVs). This study introduces an innovative liquid-cooled battery thermal management system (BTMS) for 18650-type cylindrical batteries, featuring microtubes (MCTs) embedded in a heat conduction block (HCB) combined with an aluminum housing structure. Through comprehensive numerical analysis, the effects of MCT quantity (2–16), housing thickness (0.5–2.5 mm), coolant mass flow rate (2.8 × 10<sup>-4</sup> <!-->to 1.4 × 10<sup>-3</sup> <!-->kg/s), and tube diameter (0.75–1.75 mm) on thermal performance are investigated. The system demonstrates exceptional cooling capability, maintaining the maximum temperature in the module (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>) below 35°C at 3C discharge with just four MCTs and a low flow rate of 2.8 × 10<sup>-4</sup> <!-->kg/s. The optimal configuration (10 MCTs, 0.5<!--> <!-->mm housing) achieves a <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> of 30.37°C and a remarkably low maximum temperature difference between different batteries (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>) of 2.72°C; a 55.1% improvement over non-housed designs. Furthermore, increasing the tube diameter from 1<!--> <!-->mm to 1.75<!--> <!-->mm reduces pressure drop by 96<!--> <!-->% while maintaining compactness. This BTMS design outperforms conventional approaches by simultaneously optimizing thermal uniformity, energy efficiency, and manufacturability, offering a practical solution for next-generation EVs.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"255 \",\"pages\":\"Article 127588\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025009251\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025009251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

有效的热管理对于确保电动汽车锂离子电池的安全性和性能至关重要。本研究介绍了一种用于18650型圆柱电池的创新液冷电池热管理系统(BTMS),该系统将微管(mct)嵌入热传导块(HCB)中,并结合铝外壳结构。通过综合数值分析,研究了MCT数量(2 ~ 16)、壳体厚度(0.5 ~ 2.5 mm)、冷却剂质量流量(2.8 × 10-4 ~ 1.4 × 10-3 kg/s)和管径(0.75 ~ 1.75 mm)对热工性能的影响。该系统具有出色的冷却能力,在3C放电时,仅使用4个mct和2.8 × 10-4 kg/s的低流量,模块内的最高温度(Tmax)保持在35°C以下。最佳配置(10个mct, 0.5 mm外壳)最大温度达到30.37°C,不同电池之间的最大温差(ΔT)非常低,为2.72°C;比非室内设计提高55.1%。此外,将管径从1毫米增加到1.75毫米,在保持紧凑性的同时,压降降低了96%。这种BTMS设计通过同时优化热均匀性、能效和可制造性,超越了传统方法,为下一代电动汽车提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced indirect liquid cooling for cylindrical Lithium-ion battery module using microtubes and housing system

Enhanced indirect liquid cooling for cylindrical Lithium-ion battery module using microtubes and housing system
Effective thermal management is essential for ensuring the safety and performance of lithium-ion batteries (LIBs) in electric vehicles (EVs). This study introduces an innovative liquid-cooled battery thermal management system (BTMS) for 18650-type cylindrical batteries, featuring microtubes (MCTs) embedded in a heat conduction block (HCB) combined with an aluminum housing structure. Through comprehensive numerical analysis, the effects of MCT quantity (2–16), housing thickness (0.5–2.5 mm), coolant mass flow rate (2.8 × 10-4 to 1.4 × 10-3 kg/s), and tube diameter (0.75–1.75 mm) on thermal performance are investigated. The system demonstrates exceptional cooling capability, maintaining the maximum temperature in the module (Tmax) below 35°C at 3C discharge with just four MCTs and a low flow rate of 2.8 × 10-4 kg/s. The optimal configuration (10 MCTs, 0.5 mm housing) achieves a Tmax of 30.37°C and a remarkably low maximum temperature difference between different batteries (ΔT) of 2.72°C; a 55.1% improvement over non-housed designs. Furthermore, increasing the tube diameter from 1 mm to 1.75 mm reduces pressure drop by 96 % while maintaining compactness. This BTMS design outperforms conventional approaches by simultaneously optimizing thermal uniformity, energy efficiency, and manufacturability, offering a practical solution for next-generation EVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信