利用石墨烯纳米涂层吸收剂和纳米复合相变材料协同增强双楔形太阳能蒸馏器的热能转换

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Vijayakumar Rajendran , Wesley Jeevadason Aruldoss , Prashant A. Athavale , Ramanan Pichandi , N.P. Gopinath
{"title":"利用石墨烯纳米涂层吸收剂和纳米复合相变材料协同增强双楔形太阳能蒸馏器的热能转换","authors":"Vijayakumar Rajendran ,&nbsp;Wesley Jeevadason Aruldoss ,&nbsp;Prashant A. Athavale ,&nbsp;Ramanan Pichandi ,&nbsp;N.P. Gopinath","doi":"10.1016/j.solmat.2025.113982","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the thermal energy conversion efficiency of solar stills is still a key challenge to accelerating clean and sustainable desalination technologies to combat worldwide water scarcity. In this paper, an innovative Twin Wedge Solar Still (TWSS) design is experimentally investigated with two new modifications: (i) a graphene nanoplatelet (GNP)-coated absorber plate to increase solar absorption, and (ii) a mixed nano-composite phase change material (nPCM) based on aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) and graphene oxide (GO) for enhanced thermal energy storage. This coupled combination has not been used previously for TWSS applications. The new system exhibits improved performance by enhancing solar absorptivity, thermal conductivity, and storage capacity, resulting in a cumulative productivity of 6.133 L/m<sup>2</sup>/day. The developed modified system shows 139.4 %, 153.2 %, and 230.7 % greater productivity, energy efficiency, and exergy efficiency compared to the existing TWSS. The evaporative heat transfer rate becomes almost double (235.89 W/m<sup>2</sup>K compared to 99.15 W/m<sup>2</sup>K), and the economic cost of distilled water decreases to $0.012/L from $0.024/L for the traditional system. The outcomes verify that the integration of the proposed GNP-coated absorber and GO-Al<sub>2</sub>O<sub>3</sub>-based nPCM provides a new and economical path to enhance solar desalination performance, making it a promising strategy for sustainable freshwater production.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113982"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement of thermal energy conversion in twin wedge solar stills using graphene nano-coated absorber and nano-composite PCM\",\"authors\":\"Vijayakumar Rajendran ,&nbsp;Wesley Jeevadason Aruldoss ,&nbsp;Prashant A. Athavale ,&nbsp;Ramanan Pichandi ,&nbsp;N.P. Gopinath\",\"doi\":\"10.1016/j.solmat.2025.113982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the thermal energy conversion efficiency of solar stills is still a key challenge to accelerating clean and sustainable desalination technologies to combat worldwide water scarcity. In this paper, an innovative Twin Wedge Solar Still (TWSS) design is experimentally investigated with two new modifications: (i) a graphene nanoplatelet (GNP)-coated absorber plate to increase solar absorption, and (ii) a mixed nano-composite phase change material (nPCM) based on aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) and graphene oxide (GO) for enhanced thermal energy storage. This coupled combination has not been used previously for TWSS applications. The new system exhibits improved performance by enhancing solar absorptivity, thermal conductivity, and storage capacity, resulting in a cumulative productivity of 6.133 L/m<sup>2</sup>/day. The developed modified system shows 139.4 %, 153.2 %, and 230.7 % greater productivity, energy efficiency, and exergy efficiency compared to the existing TWSS. The evaporative heat transfer rate becomes almost double (235.89 W/m<sup>2</sup>K compared to 99.15 W/m<sup>2</sup>K), and the economic cost of distilled water decreases to $0.012/L from $0.024/L for the traditional system. The outcomes verify that the integration of the proposed GNP-coated absorber and GO-Al<sub>2</sub>O<sub>3</sub>-based nPCM provides a new and economical path to enhance solar desalination performance, making it a promising strategy for sustainable freshwater production.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"295 \",\"pages\":\"Article 113982\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825005835\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005835","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

提高太阳能蒸馏器的热能转换效率仍然是加速清洁和可持续海水淡化技术以应对全球水资源短缺的关键挑战。本文对一种创新的双楔形太阳能蒸馏器(TWSS)设计进行了实验研究,并进行了两种新的改进:(i)石墨烯纳米板(GNP)涂层吸收板以增加太阳能吸收,以及(ii)基于氧化铝(Al2O3)和氧化石墨烯(GO)的混合纳米复合相变材料(nPCM)以增强热能储存。这种耦合组合以前没有用于TWSS应用程序。新系统通过提高太阳能吸收率、导热性和存储容量,提高了性能,累计生产率为6.133 L/m2/天。与现有的TWSS相比,改进后的系统的生产率、能源效率和火用效率分别提高了139.4%、153.2%和230.7%。蒸发换热率从99.15 W/m2K提高到235.89 W/m2K,几乎翻了一番,蒸馏水的经济成本从传统系统的0.024美元/L降低到0.012美元/L。结果表明,将gnp涂层吸收剂与go - al2o3基nPCM相结合,为提高太阳能脱盐性能提供了一条新的、经济的途径,使其成为可持续淡水生产的一种有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic enhancement of thermal energy conversion in twin wedge solar stills using graphene nano-coated absorber and nano-composite PCM

Synergistic enhancement of thermal energy conversion in twin wedge solar stills using graphene nano-coated absorber and nano-composite PCM
Improving the thermal energy conversion efficiency of solar stills is still a key challenge to accelerating clean and sustainable desalination technologies to combat worldwide water scarcity. In this paper, an innovative Twin Wedge Solar Still (TWSS) design is experimentally investigated with two new modifications: (i) a graphene nanoplatelet (GNP)-coated absorber plate to increase solar absorption, and (ii) a mixed nano-composite phase change material (nPCM) based on aluminium oxide (Al2O3) and graphene oxide (GO) for enhanced thermal energy storage. This coupled combination has not been used previously for TWSS applications. The new system exhibits improved performance by enhancing solar absorptivity, thermal conductivity, and storage capacity, resulting in a cumulative productivity of 6.133 L/m2/day. The developed modified system shows 139.4 %, 153.2 %, and 230.7 % greater productivity, energy efficiency, and exergy efficiency compared to the existing TWSS. The evaporative heat transfer rate becomes almost double (235.89 W/m2K compared to 99.15 W/m2K), and the economic cost of distilled water decreases to $0.012/L from $0.024/L for the traditional system. The outcomes verify that the integration of the proposed GNP-coated absorber and GO-Al2O3-based nPCM provides a new and economical path to enhance solar desalination performance, making it a promising strategy for sustainable freshwater production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信