通过分子动力学模拟和微观理论预测过冷小分子的结构弛豫

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL
Anh D. Phan , Ngo T. Que , Nguyen T.T. Duyen
{"title":"通过分子动力学模拟和微观理论预测过冷小分子的结构弛豫","authors":"Anh D. Phan ,&nbsp;Ngo T. Que ,&nbsp;Nguyen T.T. Duyen","doi":"10.1016/j.chemphys.2025.112947","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding and predicting the glassy dynamics of small organic molecules is critical for applications ranging from pharmaceuticals to energy and food preservation. In this work, we present a theoretical framework that combines molecular dynamics simulations and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to predict the structural relaxation behavior of small organic glass-formers. By using propanol, glucose, fructose, and trehalose as model systems, we estimate the glass transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) from stepwise cooling simulations and volume–temperature analysis. These computed <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> values are then inserted into the ECNLE theory to calculate temperature-dependent relaxation times and diffusion coefficients. Numerical results agree well with experimental data in prior works. This approach provides a predictive and experimentally-independent route for characterizing glassy dynamics in molecular materials.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"601 ","pages":"Article 112947"},"PeriodicalIF":2.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting structural relaxation in supercooled small molecules via molecular dynamics simulations and microscopic theory\",\"authors\":\"Anh D. Phan ,&nbsp;Ngo T. Que ,&nbsp;Nguyen T.T. Duyen\",\"doi\":\"10.1016/j.chemphys.2025.112947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding and predicting the glassy dynamics of small organic molecules is critical for applications ranging from pharmaceuticals to energy and food preservation. In this work, we present a theoretical framework that combines molecular dynamics simulations and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to predict the structural relaxation behavior of small organic glass-formers. By using propanol, glucose, fructose, and trehalose as model systems, we estimate the glass transition temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) from stepwise cooling simulations and volume–temperature analysis. These computed <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> values are then inserted into the ECNLE theory to calculate temperature-dependent relaxation times and diffusion coefficients. Numerical results agree well with experimental data in prior works. This approach provides a predictive and experimentally-independent route for characterizing glassy dynamics in molecular materials.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"601 \",\"pages\":\"Article 112947\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425003489\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425003489","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

理解和预测小有机分子的玻璃动力学对于从制药到能源和食品保存的应用至关重要。在这项工作中,我们提出了一个结合分子动力学模拟和弹性集体非线性朗之万方程(ECNLE)理论的理论框架,以预测小型有机玻璃形成物的结构弛豫行为。通过使用丙醇、葡萄糖、果糖和海藻糖作为模型系统,我们通过逐步冷却模拟和体积温度分析来估计玻璃化转变温度(Tg)。然后将这些计算出的Tg值插入到ECNLE理论中,以计算温度相关的松弛时间和扩散系数。数值计算结果与前人的实验数据吻合较好。这种方法为表征分子材料中的玻璃动力学提供了一种预测和实验独立的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting structural relaxation in supercooled small molecules via molecular dynamics simulations and microscopic theory
Understanding and predicting the glassy dynamics of small organic molecules is critical for applications ranging from pharmaceuticals to energy and food preservation. In this work, we present a theoretical framework that combines molecular dynamics simulations and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to predict the structural relaxation behavior of small organic glass-formers. By using propanol, glucose, fructose, and trehalose as model systems, we estimate the glass transition temperature (Tg) from stepwise cooling simulations and volume–temperature analysis. These computed Tg values are then inserted into the ECNLE theory to calculate temperature-dependent relaxation times and diffusion coefficients. Numerical results agree well with experimental data in prior works. This approach provides a predictive and experimentally-independent route for characterizing glassy dynamics in molecular materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信