Jiaqing Wang , Youyu Li , Ning Li , Hongliang Han , Zhanfang Ma , Haijun Yang
{"title":"基于多交联网络的高保水导电水凝胶用于超灵敏传感平台","authors":"Jiaqing Wang , Youyu Li , Ning Li , Hongliang Han , Zhanfang Ma , Haijun Yang","doi":"10.1016/j.bioelechem.2025.109120","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels are widely used in electrochemical sensors due to their unique properties, but their conductivity, influenced by water-content, is highly susceptible to external environment. Therefore, enhancing the water-retention of hydrogels while ensuring stable conductivity and analytical performance is crucial for broadening their application. In this work, a novel polyacrylamide/bacterial cellulose/sulfobetaine methacrylate/sodium alginate composite hydrogel (PBSS)-based multi-crosslinked network hydrogel was designed. The water retention of the PBSS hydrogel was improved by a factor of 1.5 compared to the unreinforced polyacrylamide (PAM) hydrogel (Water loss of hydrogel exposed for 12 h at 37 °C). With the water retention properties of itself, the PBSS hydrogel retained 86 % of its initial conductivity after 12 h of exposure at 60 °C, whereas the PAM hydrogel not only exhibited poor initial conductivity but also lost up to 47 % of its conductivity. PBSS hydrogels were designed as sensing platforms and CaCO<sub>3</sub> spheres were designed as immunoprobes. Ca<sup>2+</sup> released by the probe rivals Ni<sup>2+</sup> for the signaling substance on the substrate, enabling the quantification of the target analyte. The sensor exhibited excellent analytical performance and maintained stable performance after four days of storage at 37 °C, offering a promising approach to enhance hydrogel sensor stability for clinical applications.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"168 ","pages":"Article 109120"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly water-retaining conductive hydrogels based on multi-crosslinked networks for ultrasensitive sensing platform\",\"authors\":\"Jiaqing Wang , Youyu Li , Ning Li , Hongliang Han , Zhanfang Ma , Haijun Yang\",\"doi\":\"10.1016/j.bioelechem.2025.109120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogels are widely used in electrochemical sensors due to their unique properties, but their conductivity, influenced by water-content, is highly susceptible to external environment. Therefore, enhancing the water-retention of hydrogels while ensuring stable conductivity and analytical performance is crucial for broadening their application. In this work, a novel polyacrylamide/bacterial cellulose/sulfobetaine methacrylate/sodium alginate composite hydrogel (PBSS)-based multi-crosslinked network hydrogel was designed. The water retention of the PBSS hydrogel was improved by a factor of 1.5 compared to the unreinforced polyacrylamide (PAM) hydrogel (Water loss of hydrogel exposed for 12 h at 37 °C). With the water retention properties of itself, the PBSS hydrogel retained 86 % of its initial conductivity after 12 h of exposure at 60 °C, whereas the PAM hydrogel not only exhibited poor initial conductivity but also lost up to 47 % of its conductivity. PBSS hydrogels were designed as sensing platforms and CaCO<sub>3</sub> spheres were designed as immunoprobes. Ca<sup>2+</sup> released by the probe rivals Ni<sup>2+</sup> for the signaling substance on the substrate, enabling the quantification of the target analyte. The sensor exhibited excellent analytical performance and maintained stable performance after four days of storage at 37 °C, offering a promising approach to enhance hydrogel sensor stability for clinical applications.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"168 \",\"pages\":\"Article 109120\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425002233\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425002233","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Highly water-retaining conductive hydrogels based on multi-crosslinked networks for ultrasensitive sensing platform
Hydrogels are widely used in electrochemical sensors due to their unique properties, but their conductivity, influenced by water-content, is highly susceptible to external environment. Therefore, enhancing the water-retention of hydrogels while ensuring stable conductivity and analytical performance is crucial for broadening their application. In this work, a novel polyacrylamide/bacterial cellulose/sulfobetaine methacrylate/sodium alginate composite hydrogel (PBSS)-based multi-crosslinked network hydrogel was designed. The water retention of the PBSS hydrogel was improved by a factor of 1.5 compared to the unreinforced polyacrylamide (PAM) hydrogel (Water loss of hydrogel exposed for 12 h at 37 °C). With the water retention properties of itself, the PBSS hydrogel retained 86 % of its initial conductivity after 12 h of exposure at 60 °C, whereas the PAM hydrogel not only exhibited poor initial conductivity but also lost up to 47 % of its conductivity. PBSS hydrogels were designed as sensing platforms and CaCO3 spheres were designed as immunoprobes. Ca2+ released by the probe rivals Ni2+ for the signaling substance on the substrate, enabling the quantification of the target analyte. The sensor exhibited excellent analytical performance and maintained stable performance after four days of storage at 37 °C, offering a promising approach to enhance hydrogel sensor stability for clinical applications.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.