用于水毒性实时传感的磁化电化学活性细菌全细胞生物传感器

IF 4.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hongyu Zhao , Yanhong Ge , Jing Wu , Bo Cao , Yue Yi , Beizhen Xie , Hong Liu
{"title":"用于水毒性实时传感的磁化电化学活性细菌全细胞生物传感器","authors":"Hongyu Zhao ,&nbsp;Yanhong Ge ,&nbsp;Jing Wu ,&nbsp;Bo Cao ,&nbsp;Yue Yi ,&nbsp;Beizhen Xie ,&nbsp;Hong Liu","doi":"10.1016/j.bioelechem.2025.109119","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time sensing of water toxicity is essential for environmental health monitoring. However, devising an electrochemically active biofilm-based biosensor for water toxicity assaying usually requires cumbersome culture techniques to immobilize electrochemically active bacteria (EAB) on the electrode, which results in poor timeliness of water quality early-warning. Herein, we developed magnetized electrochemically active bacteria (MEAB)-based whole-cell biosensors (WCBs) for real-time sensing of water toxicity. The results showed that artificial MEAB biofilm could be magnetically constructed in one step within 5 s, which greatly simplified the fabrication process of artificial electrochemically active biofilm. By correlating quantifiable bioelectrical signal with MEAB cell activity, the MEAB-based WCBs enabled detection of Hg<sup>2+</sup>, trichloroacetic acid (TCAA), avermectin (AVM), Cr<sup>6+</sup>, and chlortetracycline hydrochloride (CTC) in synthetic water samples within 30<!--> <!-->min. The estimated detection limit for Hg<sup>2+</sup>, TCAA, AVM, Cr<sup>6+</sup>, and CTC reached 50.4 ± 1.6, 54.7 ± 1.5, 62.8 ± 2.0, 66.8 ± 1.6, and 73.3 ± 2.2 μg L<sup>−1</sup> with optimal biomass, respectively. As proof-of-concept applications, the MEAB-based WCBs not only achieved accurate detection of 0.1 mg L<sup>−1</sup> toxicants in real water samples but also successfully sensed comprehensive toxicity of agricultural wastewater within 30 min. This study provides a new strategy for real-time sensing of water toxicity.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"168 ","pages":"Article 109119"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetized electrochemically active bacteria-based whole-cell biosensors for real-time sensing of water toxicity\",\"authors\":\"Hongyu Zhao ,&nbsp;Yanhong Ge ,&nbsp;Jing Wu ,&nbsp;Bo Cao ,&nbsp;Yue Yi ,&nbsp;Beizhen Xie ,&nbsp;Hong Liu\",\"doi\":\"10.1016/j.bioelechem.2025.109119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Real-time sensing of water toxicity is essential for environmental health monitoring. However, devising an electrochemically active biofilm-based biosensor for water toxicity assaying usually requires cumbersome culture techniques to immobilize electrochemically active bacteria (EAB) on the electrode, which results in poor timeliness of water quality early-warning. Herein, we developed magnetized electrochemically active bacteria (MEAB)-based whole-cell biosensors (WCBs) for real-time sensing of water toxicity. The results showed that artificial MEAB biofilm could be magnetically constructed in one step within 5 s, which greatly simplified the fabrication process of artificial electrochemically active biofilm. By correlating quantifiable bioelectrical signal with MEAB cell activity, the MEAB-based WCBs enabled detection of Hg<sup>2+</sup>, trichloroacetic acid (TCAA), avermectin (AVM), Cr<sup>6+</sup>, and chlortetracycline hydrochloride (CTC) in synthetic water samples within 30<!--> <!-->min. The estimated detection limit for Hg<sup>2+</sup>, TCAA, AVM, Cr<sup>6+</sup>, and CTC reached 50.4 ± 1.6, 54.7 ± 1.5, 62.8 ± 2.0, 66.8 ± 1.6, and 73.3 ± 2.2 μg L<sup>−1</sup> with optimal biomass, respectively. As proof-of-concept applications, the MEAB-based WCBs not only achieved accurate detection of 0.1 mg L<sup>−1</sup> toxicants in real water samples but also successfully sensed comprehensive toxicity of agricultural wastewater within 30 min. This study provides a new strategy for real-time sensing of water toxicity.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"168 \",\"pages\":\"Article 109119\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425002221\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425002221","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水毒性的实时监测是环境健康监测的必要条件。然而,设计用于水毒性分析的电化学活性生物膜生物传感器通常需要繁琐的培养技术来将电化学活性细菌(EAB)固定在电极上,这导致水质预警的及时性较差。在此,我们开发了基于磁化电化学活性细菌(MEAB)的全细胞生物传感器(WCBs),用于实时检测水毒性。结果表明,MEAB人工生物膜可在5 s内一步磁性构建完成,大大简化了人工电化学活性生物膜的制备过程。通过将可量化的生物电信号与MEAB细胞活性相关联,基于MEAB的wcb能够在30分钟内检测合成水样中的Hg2+、三氯乙酸(TCAA)、阿维菌素(AVM)、Cr6+和盐酸氯四环素(CTC)。在最佳生物量条件下,Hg2+、TCAA、AVM、Cr6+和CTC的检出限分别为50.4±1.6、54.7±1.5、62.8±2.0、66.8±1.6和73.3±2.2 μg L−1。作为概念验证应用,基于meab的wcb不仅实现了对真实水样中0.1 mg L−1毒物的准确检测,而且在30分钟内成功地检测了农业废水的综合毒性。本研究为水毒性实时监测提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetized electrochemically active bacteria-based whole-cell biosensors for real-time sensing of water toxicity

Magnetized electrochemically active bacteria-based whole-cell biosensors for real-time sensing of water toxicity
Real-time sensing of water toxicity is essential for environmental health monitoring. However, devising an electrochemically active biofilm-based biosensor for water toxicity assaying usually requires cumbersome culture techniques to immobilize electrochemically active bacteria (EAB) on the electrode, which results in poor timeliness of water quality early-warning. Herein, we developed magnetized electrochemically active bacteria (MEAB)-based whole-cell biosensors (WCBs) for real-time sensing of water toxicity. The results showed that artificial MEAB biofilm could be magnetically constructed in one step within 5 s, which greatly simplified the fabrication process of artificial electrochemically active biofilm. By correlating quantifiable bioelectrical signal with MEAB cell activity, the MEAB-based WCBs enabled detection of Hg2+, trichloroacetic acid (TCAA), avermectin (AVM), Cr6+, and chlortetracycline hydrochloride (CTC) in synthetic water samples within 30 min. The estimated detection limit for Hg2+, TCAA, AVM, Cr6+, and CTC reached 50.4 ± 1.6, 54.7 ± 1.5, 62.8 ± 2.0, 66.8 ± 1.6, and 73.3 ± 2.2 μg L−1 with optimal biomass, respectively. As proof-of-concept applications, the MEAB-based WCBs not only achieved accurate detection of 0.1 mg L−1 toxicants in real water samples but also successfully sensed comprehensive toxicity of agricultural wastewater within 30 min. This study provides a new strategy for real-time sensing of water toxicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信