使用sno2稳定CsH2PO4质子传输膜的电化学氢泵:250℃下的性能评价

IF 7.1 Q1 ENGINEERING, CHEMICAL
Minal Gupta , Kangkang Zhang , Kevin Huang
{"title":"使用sno2稳定CsH2PO4质子传输膜的电化学氢泵:250℃下的性能评价","authors":"Minal Gupta ,&nbsp;Kangkang Zhang ,&nbsp;Kevin Huang","doi":"10.1016/j.ceja.2025.100884","DOIUrl":null,"url":null,"abstract":"<div><div>Proton transport membrane (PTM) based electrochemical cells are a more efficient way to separate hydrogen than conventional porous membrane-based technologies. Herein, we report an investigation on the performance (e.g., hydrogen yield, Faradaic efficiency and stability) of an electrochemical hydrogen pump (EHP) based on super-protonic CsH<sub>2</sub>PO<sub>4</sub> (CDP) and 18wt%SnO<sub>2</sub>-stabilized CDP (CS-18) PTM under different current densities, voltages, water contents, electrode compositions and H<sub>2</sub> concentrations. The results show that both CDP and CS-18 cells perform well under 10 mA/cm<sup>2</sup> and 0.38 atm of partial pressure of water vapor (p(H<sub>2</sub>O), while under lower p(H<sub>2</sub>O)=0.20 atm, only CS-18 cells can stably operate. Under higher 25 mA/cm<sup>2</sup> and p(H<sub>2</sub>O)=0.20 atm, CS-18 cell also fails to retain its original performance, exhibiting degradation. The reason for the instability under either high current density or low p(H<sub>2</sub>O) is fundamentally rooted in dehydration of the membrane induced by either low p(H<sub>2</sub>O) or electrochemical splitting of H<sub>2</sub>O inside the membrane at potentials higher than 1.23 V. We show that operation at a constant 1 V is a safe way to avoid CDP’s internal water splitting and ensure stable operation. Overall, this work has demonstrated technical feasibility and favorable operating conditions for using CDP, particularly the SnO<sub>2</sub>-stabilzied CDP, to electrochemically separate H<sub>2</sub> from different H<sub>2</sub>-containing sources.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"24 ","pages":"Article 100884"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical hydrogen pump using SnO2-stabilized CsH2PO4 proton transport membrane: A performance evaluation at 250°C\",\"authors\":\"Minal Gupta ,&nbsp;Kangkang Zhang ,&nbsp;Kevin Huang\",\"doi\":\"10.1016/j.ceja.2025.100884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proton transport membrane (PTM) based electrochemical cells are a more efficient way to separate hydrogen than conventional porous membrane-based technologies. Herein, we report an investigation on the performance (e.g., hydrogen yield, Faradaic efficiency and stability) of an electrochemical hydrogen pump (EHP) based on super-protonic CsH<sub>2</sub>PO<sub>4</sub> (CDP) and 18wt%SnO<sub>2</sub>-stabilized CDP (CS-18) PTM under different current densities, voltages, water contents, electrode compositions and H<sub>2</sub> concentrations. The results show that both CDP and CS-18 cells perform well under 10 mA/cm<sup>2</sup> and 0.38 atm of partial pressure of water vapor (p(H<sub>2</sub>O), while under lower p(H<sub>2</sub>O)=0.20 atm, only CS-18 cells can stably operate. Under higher 25 mA/cm<sup>2</sup> and p(H<sub>2</sub>O)=0.20 atm, CS-18 cell also fails to retain its original performance, exhibiting degradation. The reason for the instability under either high current density or low p(H<sub>2</sub>O) is fundamentally rooted in dehydration of the membrane induced by either low p(H<sub>2</sub>O) or electrochemical splitting of H<sub>2</sub>O inside the membrane at potentials higher than 1.23 V. We show that operation at a constant 1 V is a safe way to avoid CDP’s internal water splitting and ensure stable operation. Overall, this work has demonstrated technical feasibility and favorable operating conditions for using CDP, particularly the SnO<sub>2</sub>-stabilzied CDP, to electrochemically separate H<sub>2</sub> from different H<sub>2</sub>-containing sources.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"24 \",\"pages\":\"Article 100884\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125001814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125001814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于质子传输膜(PTM)的电化学电池是一种比传统多孔膜技术更有效的分离氢的方法。本文研究了基于超质子CsH2PO4 (CDP)和18wt% sno2稳定CDP (CS-18) PTM的电化学氢泵(EHP)在不同电流密度、电压、含水量、电极组成和H2浓度下的性能(如氢气产率、法拉第效率和稳定性)。结果表明,在10 mA/cm2和0.38 atm的水蒸气分压(p(H2O)下,CDP和CS-18电池均表现良好,而在p(H2O)=0.20 atm下,只有CS-18电池能稳定工作。在较高的25 mA/cm2和p(H2O)=0.20 atm下,CS-18电池也不能保持其原有的性能,表现出退化。在高电流密度和低p(H2O)下不稳定的根本原因是低p(H2O)或高于1.23 V时膜内H2O的电化学分裂导致膜脱水。结果表明,恒定电压1v运行是避免CDP内部水分裂和保证稳定运行的安全方法。总的来说,这项工作已经证明了使用CDP,特别是sno2稳定的CDP,从不同的H2源中电化学分离H2的技术可行性和良好的操作条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical hydrogen pump using SnO2-stabilized CsH2PO4 proton transport membrane: A performance evaluation at 250°C
Proton transport membrane (PTM) based electrochemical cells are a more efficient way to separate hydrogen than conventional porous membrane-based technologies. Herein, we report an investigation on the performance (e.g., hydrogen yield, Faradaic efficiency and stability) of an electrochemical hydrogen pump (EHP) based on super-protonic CsH2PO4 (CDP) and 18wt%SnO2-stabilized CDP (CS-18) PTM under different current densities, voltages, water contents, electrode compositions and H2 concentrations. The results show that both CDP and CS-18 cells perform well under 10 mA/cm2 and 0.38 atm of partial pressure of water vapor (p(H2O), while under lower p(H2O)=0.20 atm, only CS-18 cells can stably operate. Under higher 25 mA/cm2 and p(H2O)=0.20 atm, CS-18 cell also fails to retain its original performance, exhibiting degradation. The reason for the instability under either high current density or low p(H2O) is fundamentally rooted in dehydration of the membrane induced by either low p(H2O) or electrochemical splitting of H2O inside the membrane at potentials higher than 1.23 V. We show that operation at a constant 1 V is a safe way to avoid CDP’s internal water splitting and ensure stable operation. Overall, this work has demonstrated technical feasibility and favorable operating conditions for using CDP, particularly the SnO2-stabilzied CDP, to electrochemically separate H2 from different H2-containing sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信