{"title":"火山-沉积对地幔柱衰变的响应:地中海东部边缘的一个案例研究","authors":"A. Segev , E. Sass , U. Schattner","doi":"10.1016/j.gsf.2025.102161","DOIUrl":null,"url":null,"abstract":"<div><div>The decay of a mantle plume is characterized by a decline in magmatic activity, localized volcanic pulses, and short-term topographic fluctuations. These processes are better preserved in marine settings than on land, offering a clearer record of surface dynamics. This study examines the decay of the Levant mantle plume during the Albian-Cenomanian by analyzing the effect of recurring volcanism and vertical motions on the volcano-sedimentary stratigraphy exposed in Mt. Carmel, located on the eastern Mediterranean continental margin, a gas giant province. Geological mapping and <sup>40</sup>Ar/<sup>39</sup>Ar dating reveal four distinct volcanic pulses (V<sub>1</sub>–V<sub>4</sub>) between ∼99 Ma and 95.4 Ma, each associated with surface uplift followed by subsidence and sedimentation. These cycles suggest pressure accumulation and release, likely driven by residual plume-related magmatic activity rather than regional tectonics. Volcanism, vertical motions, and shallow marine areas created local basins with varying connections to the sea, resulting in diverse depositional environments characterized by lithologies such as chalk, limestone, dolomite, marl, and tuff. The volcanic structures influenced facies changes and contributed to the formation of dolomite in shallow, partially closed marine environments. A final pulse, V<sub>5</sub> at 82 Ma, occurred after 13 Myr of quiescence, marking a shift in the regional tectonic setting. The lack of post-Maastrichtian volcanism and a 25 Myr long period of subsidence indicate plume termination. These findings demonstrate how a decaying plume loses its ability to influence surface dynamics. The Albian-Turonian reefs, situated atop a long-lasting crustal high structural block (swell) at the Arabian platform’s edge, serve as a significant example for analogous worldwide.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 6","pages":"Article 102161"},"PeriodicalIF":8.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volcano-sedimentary response to a mantle plume decay: A case study from the Eastern Mediterranean margin\",\"authors\":\"A. Segev , E. Sass , U. Schattner\",\"doi\":\"10.1016/j.gsf.2025.102161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The decay of a mantle plume is characterized by a decline in magmatic activity, localized volcanic pulses, and short-term topographic fluctuations. These processes are better preserved in marine settings than on land, offering a clearer record of surface dynamics. This study examines the decay of the Levant mantle plume during the Albian-Cenomanian by analyzing the effect of recurring volcanism and vertical motions on the volcano-sedimentary stratigraphy exposed in Mt. Carmel, located on the eastern Mediterranean continental margin, a gas giant province. Geological mapping and <sup>40</sup>Ar/<sup>39</sup>Ar dating reveal four distinct volcanic pulses (V<sub>1</sub>–V<sub>4</sub>) between ∼99 Ma and 95.4 Ma, each associated with surface uplift followed by subsidence and sedimentation. These cycles suggest pressure accumulation and release, likely driven by residual plume-related magmatic activity rather than regional tectonics. Volcanism, vertical motions, and shallow marine areas created local basins with varying connections to the sea, resulting in diverse depositional environments characterized by lithologies such as chalk, limestone, dolomite, marl, and tuff. The volcanic structures influenced facies changes and contributed to the formation of dolomite in shallow, partially closed marine environments. A final pulse, V<sub>5</sub> at 82 Ma, occurred after 13 Myr of quiescence, marking a shift in the regional tectonic setting. The lack of post-Maastrichtian volcanism and a 25 Myr long period of subsidence indicate plume termination. These findings demonstrate how a decaying plume loses its ability to influence surface dynamics. The Albian-Turonian reefs, situated atop a long-lasting crustal high structural block (swell) at the Arabian platform’s edge, serve as a significant example for analogous worldwide.</div></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"16 6\",\"pages\":\"Article 102161\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987125001665\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125001665","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Volcano-sedimentary response to a mantle plume decay: A case study from the Eastern Mediterranean margin
The decay of a mantle plume is characterized by a decline in magmatic activity, localized volcanic pulses, and short-term topographic fluctuations. These processes are better preserved in marine settings than on land, offering a clearer record of surface dynamics. This study examines the decay of the Levant mantle plume during the Albian-Cenomanian by analyzing the effect of recurring volcanism and vertical motions on the volcano-sedimentary stratigraphy exposed in Mt. Carmel, located on the eastern Mediterranean continental margin, a gas giant province. Geological mapping and 40Ar/39Ar dating reveal four distinct volcanic pulses (V1–V4) between ∼99 Ma and 95.4 Ma, each associated with surface uplift followed by subsidence and sedimentation. These cycles suggest pressure accumulation and release, likely driven by residual plume-related magmatic activity rather than regional tectonics. Volcanism, vertical motions, and shallow marine areas created local basins with varying connections to the sea, resulting in diverse depositional environments characterized by lithologies such as chalk, limestone, dolomite, marl, and tuff. The volcanic structures influenced facies changes and contributed to the formation of dolomite in shallow, partially closed marine environments. A final pulse, V5 at 82 Ma, occurred after 13 Myr of quiescence, marking a shift in the regional tectonic setting. The lack of post-Maastrichtian volcanism and a 25 Myr long period of subsidence indicate plume termination. These findings demonstrate how a decaying plume loses its ability to influence surface dynamics. The Albian-Turonian reefs, situated atop a long-lasting crustal high structural block (swell) at the Arabian platform’s edge, serve as a significant example for analogous worldwide.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.