调整仿生开孔泡沫结构:调整两相复合材料力学行为的一种有前途的方法

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Xiaonan Lu , Jianchao Li , Tianzi Wang , Cheng Liu , Wenting Ouyang , Bowen Gong , Sainan Ma , Likun Wang , Huan Wang , Bo Yuan , Zhong Zheng , Xiang Gao , Hua-Xin Peng
{"title":"调整仿生开孔泡沫结构:调整两相复合材料力学行为的一种有前途的方法","authors":"Xiaonan Lu ,&nbsp;Jianchao Li ,&nbsp;Tianzi Wang ,&nbsp;Cheng Liu ,&nbsp;Wenting Ouyang ,&nbsp;Bowen Gong ,&nbsp;Sainan Ma ,&nbsp;Likun Wang ,&nbsp;Huan Wang ,&nbsp;Bo Yuan ,&nbsp;Zhong Zheng ,&nbsp;Xiang Gao ,&nbsp;Hua-Xin Peng","doi":"10.1016/j.coco.2025.102599","DOIUrl":null,"url":null,"abstract":"<div><div>Natural organisms have evolved diverse porous/foam architectures for optimal performance of two-phase composite. Inspired by these biological designs, this work develops a novel Voronoi-based modelling method for open-cell foams. The method regulates scaffold morphology through single geometry parameter, i.e. intercellular distance <em>d</em>, generating biomimetic geometries ranging from pomelo-peel-like to trabecular-bone-like structures. Using SiC<sub>3D</sub>/Al composites as model materials, the geometry-property relationship is established by finite element analysis (FEA). For these foam-reinforced composites, larger SiC/Al interfaces enhance load transfer efficiency. Consequently, strength decreases monotonically (356 → 326 MPa) with increasing <em>d</em> due to reduced interface area. Extreme <em>d</em> values (low or high) cause sharp and concave features that trigger catastrophic SiC<sub>3D</sub> fragmentation, reducing ductility. Peak elongation (3.98 %) occurs at <em>d</em> = 0.65. Thus, optimal performance requires <em>d</em> ≤ 0.65. Structural design alone cannot simultaneously maximize strength and toughness. The matrix-reinforcement compatibility is essential, demanding tough matrices and ultra-strong reinforcements.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"59 ","pages":"Article 102599"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning biomimetic open-cell foam structure: a promising way to tailor the mechanical behaviors of two-phase composite\",\"authors\":\"Xiaonan Lu ,&nbsp;Jianchao Li ,&nbsp;Tianzi Wang ,&nbsp;Cheng Liu ,&nbsp;Wenting Ouyang ,&nbsp;Bowen Gong ,&nbsp;Sainan Ma ,&nbsp;Likun Wang ,&nbsp;Huan Wang ,&nbsp;Bo Yuan ,&nbsp;Zhong Zheng ,&nbsp;Xiang Gao ,&nbsp;Hua-Xin Peng\",\"doi\":\"10.1016/j.coco.2025.102599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural organisms have evolved diverse porous/foam architectures for optimal performance of two-phase composite. Inspired by these biological designs, this work develops a novel Voronoi-based modelling method for open-cell foams. The method regulates scaffold morphology through single geometry parameter, i.e. intercellular distance <em>d</em>, generating biomimetic geometries ranging from pomelo-peel-like to trabecular-bone-like structures. Using SiC<sub>3D</sub>/Al composites as model materials, the geometry-property relationship is established by finite element analysis (FEA). For these foam-reinforced composites, larger SiC/Al interfaces enhance load transfer efficiency. Consequently, strength decreases monotonically (356 → 326 MPa) with increasing <em>d</em> due to reduced interface area. Extreme <em>d</em> values (low or high) cause sharp and concave features that trigger catastrophic SiC<sub>3D</sub> fragmentation, reducing ductility. Peak elongation (3.98 %) occurs at <em>d</em> = 0.65. Thus, optimal performance requires <em>d</em> ≤ 0.65. Structural design alone cannot simultaneously maximize strength and toughness. The matrix-reinforcement compatibility is essential, demanding tough matrices and ultra-strong reinforcements.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"59 \",\"pages\":\"Article 102599\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925003523\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925003523","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

为了使两相复合材料的性能达到最佳,自然生物进化出了不同的多孔/泡沫结构。受这些生物设计的启发,这项工作开发了一种新的基于voronoi的开孔泡沫建模方法。该方法通过单个几何参数(即细胞间距离d)调节支架形态,生成从柚子皮状到骨小梁状的仿生几何结构。以SiC3D/Al复合材料为模型材料,通过有限元分析建立了几何-性能关系。对于这些泡沫增强复合材料,更大的SiC/Al界面提高了载荷传递效率。随着d的增大,界面面积减小,强度单调降低(356→326 MPa)。极端的d值(低或高)会导致尖锐和凹的特征,引发灾难性的SiC3D碎裂,降低延展性。d = 0.65时出现峰值伸长率(3.98%)。因此,最优性能要求d≤0.65。单靠结构设计无法同时使强度和韧性最大化。基体-增强材料的相容性是必不可少的,需要坚韧的基体和超强的增强材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning biomimetic open-cell foam structure: a promising way to tailor the mechanical behaviors of two-phase composite
Natural organisms have evolved diverse porous/foam architectures for optimal performance of two-phase composite. Inspired by these biological designs, this work develops a novel Voronoi-based modelling method for open-cell foams. The method regulates scaffold morphology through single geometry parameter, i.e. intercellular distance d, generating biomimetic geometries ranging from pomelo-peel-like to trabecular-bone-like structures. Using SiC3D/Al composites as model materials, the geometry-property relationship is established by finite element analysis (FEA). For these foam-reinforced composites, larger SiC/Al interfaces enhance load transfer efficiency. Consequently, strength decreases monotonically (356 → 326 MPa) with increasing d due to reduced interface area. Extreme d values (low or high) cause sharp and concave features that trigger catastrophic SiC3D fragmentation, reducing ductility. Peak elongation (3.98 %) occurs at d = 0.65. Thus, optimal performance requires d ≤ 0.65. Structural design alone cannot simultaneously maximize strength and toughness. The matrix-reinforcement compatibility is essential, demanding tough matrices and ultra-strong reinforcements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信