3d打印热塑性CFRP, GFRP和AFRP复合材料的uv诱导转化和机械性能

IF 7.7 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Ebrahim Rogha , Milad Bazli , Milad Shakiba , Ali Rajabipour , Reza Hassanli , Caleb O. Ojo , Govind Aryal , Hamish A. Campbell
{"title":"3d打印热塑性CFRP, GFRP和AFRP复合材料的uv诱导转化和机械性能","authors":"Ebrahim Rogha ,&nbsp;Milad Bazli ,&nbsp;Milad Shakiba ,&nbsp;Ali Rajabipour ,&nbsp;Reza Hassanli ,&nbsp;Caleb O. Ojo ,&nbsp;Govind Aryal ,&nbsp;Hamish A. Campbell","doi":"10.1016/j.coco.2025.102591","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the effects of UV radiation on the residual flexural properties of 3D-printed continuous carbon (CFRP), glass (GFRP), and aramid (AFRP) fibre-reinforced polymer composites. Flexural properties were assessed after accelerated UV irradiation for 720, 1440, and 2160 h, approximately equivalent to 1, 2, and 3 years of cumulative UV dose in Melbourne, thereby isolating UV‐specific degradation from other weathering factors (moisture, thermal cycling, wind or rain). Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterise microstructural and chemical changes. For CFRP and GFRP composites with Onyx® matrix, UV exposure triggered both photodegradation and cross-linking, with the latter dominating and enhancing mechanical strength. Retention values were highest for GFRP composites (up to 147 %), followed by CFRP composites (up to 142 %). In contrast, AFRP composites initially showed improved strength retention at 1440 h of UV exposure (103 %), but overall strength declined after prolonged exposure (94 % at 2160 h). SEM confirmed surface microcracking and embrittlement, while FTIR revealed oxidation and chemical transformation beyond the surface. These results highlight fibre-specific UV degradation responses and offer insights into the long-term performance of 3D-printed thermoplastic composites for outdoor structural applications.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"59 ","pages":"Article 102591"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UV-induced transformations and mechanical performance of 3D-printed thermoplastic CFRP, GFRP, and AFRP composites\",\"authors\":\"Ebrahim Rogha ,&nbsp;Milad Bazli ,&nbsp;Milad Shakiba ,&nbsp;Ali Rajabipour ,&nbsp;Reza Hassanli ,&nbsp;Caleb O. Ojo ,&nbsp;Govind Aryal ,&nbsp;Hamish A. Campbell\",\"doi\":\"10.1016/j.coco.2025.102591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluates the effects of UV radiation on the residual flexural properties of 3D-printed continuous carbon (CFRP), glass (GFRP), and aramid (AFRP) fibre-reinforced polymer composites. Flexural properties were assessed after accelerated UV irradiation for 720, 1440, and 2160 h, approximately equivalent to 1, 2, and 3 years of cumulative UV dose in Melbourne, thereby isolating UV‐specific degradation from other weathering factors (moisture, thermal cycling, wind or rain). Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterise microstructural and chemical changes. For CFRP and GFRP composites with Onyx® matrix, UV exposure triggered both photodegradation and cross-linking, with the latter dominating and enhancing mechanical strength. Retention values were highest for GFRP composites (up to 147 %), followed by CFRP composites (up to 142 %). In contrast, AFRP composites initially showed improved strength retention at 1440 h of UV exposure (103 %), but overall strength declined after prolonged exposure (94 % at 2160 h). SEM confirmed surface microcracking and embrittlement, while FTIR revealed oxidation and chemical transformation beyond the surface. These results highlight fibre-specific UV degradation responses and offer insights into the long-term performance of 3D-printed thermoplastic composites for outdoor structural applications.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"59 \",\"pages\":\"Article 102591\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925003444\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925003444","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了紫外线辐射对3d打印连续碳(CFRP)、玻璃(GFRP)和芳纶(AFRP)纤维增强聚合物复合材料残余弯曲性能的影响。在720、1440和2160小时(大约相当于墨尔本1、2和3年的累积紫外线剂量)的加速紫外线照射后,对弯曲性能进行了评估,从而将紫外线特异性降解与其他风化因素(湿度、热循环、风或雨)隔离开来。利用扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)表征微观结构和化学变化。对于CFRP和GFRP复合材料与玛瑙®基质,紫外线暴露触发光降解和交联,后者占主导地位,提高机械强度。GFRP复合材料的保留率最高(高达147%),其次是CFRP复合材料(高达142%)。相比之下,AFRP复合材料在紫外线照射1440小时(103%)时,强度保持有所提高,但在长时间暴露后,总体强度下降(2160小时时下降94%)。扫描电镜证实了表面微裂纹和脆化,而红外光谱显示了表面外的氧化和化学转变。这些结果突出了纤维特定的紫外线降解反应,并为户外结构应用的3d打印热塑性复合材料的长期性能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-induced transformations and mechanical performance of 3D-printed thermoplastic CFRP, GFRP, and AFRP composites
This study evaluates the effects of UV radiation on the residual flexural properties of 3D-printed continuous carbon (CFRP), glass (GFRP), and aramid (AFRP) fibre-reinforced polymer composites. Flexural properties were assessed after accelerated UV irradiation for 720, 1440, and 2160 h, approximately equivalent to 1, 2, and 3 years of cumulative UV dose in Melbourne, thereby isolating UV‐specific degradation from other weathering factors (moisture, thermal cycling, wind or rain). Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterise microstructural and chemical changes. For CFRP and GFRP composites with Onyx® matrix, UV exposure triggered both photodegradation and cross-linking, with the latter dominating and enhancing mechanical strength. Retention values were highest for GFRP composites (up to 147 %), followed by CFRP composites (up to 142 %). In contrast, AFRP composites initially showed improved strength retention at 1440 h of UV exposure (103 %), but overall strength declined after prolonged exposure (94 % at 2160 h). SEM confirmed surface microcracking and embrittlement, while FTIR revealed oxidation and chemical transformation beyond the surface. These results highlight fibre-specific UV degradation responses and offer insights into the long-term performance of 3D-printed thermoplastic composites for outdoor structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信