Cham Il Kim , Ji Yeong Lee , Won Tae Kim , Eun Soo Park , Heon Kang , Do Hyang Kim
{"title":"硼对镍基高温合金蠕变过程中再结晶的抑制作用","authors":"Cham Il Kim , Ji Yeong Lee , Won Tae Kim , Eun Soo Park , Heon Kang , Do Hyang Kim","doi":"10.1016/j.matchar.2025.115580","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of boron on microstructural evolution and creep properties in a FeNi-base superalloy, showing that boron plays a role in significant enhancement of the creep resistance by suppression of recrystallization during creep. Detailed analyses using transmission electron microscopy, atom probe tomography, and electron backscattered diffraction revealed that boron segregates at grain boundaries and at the interface between the matrix and the precipitate, thereby increasing grain boundary cohesion and suppressing dynamic recrystallization. Moreover, boron stabilizes the grain structure by increasing the recrystallization threshold, thus inhibiting recrystallization during creep. The effect of boron in strengthening the grain boundary is particularly pronounced in the creep test with lower strain rate, where it effectively extends the creep rupture life, while this effect is less emphasized in the high temperature tensile test with higher strain rate. These findings suggest that the addition of boron is crucial for the optimization of the high-temperature performance of FeNi-base superalloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115580"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron-induced suppression of recrystallization during creep in FeNi-based superalloy\",\"authors\":\"Cham Il Kim , Ji Yeong Lee , Won Tae Kim , Eun Soo Park , Heon Kang , Do Hyang Kim\",\"doi\":\"10.1016/j.matchar.2025.115580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of boron on microstructural evolution and creep properties in a FeNi-base superalloy, showing that boron plays a role in significant enhancement of the creep resistance by suppression of recrystallization during creep. Detailed analyses using transmission electron microscopy, atom probe tomography, and electron backscattered diffraction revealed that boron segregates at grain boundaries and at the interface between the matrix and the precipitate, thereby increasing grain boundary cohesion and suppressing dynamic recrystallization. Moreover, boron stabilizes the grain structure by increasing the recrystallization threshold, thus inhibiting recrystallization during creep. The effect of boron in strengthening the grain boundary is particularly pronounced in the creep test with lower strain rate, where it effectively extends the creep rupture life, while this effect is less emphasized in the high temperature tensile test with higher strain rate. These findings suggest that the addition of boron is crucial for the optimization of the high-temperature performance of FeNi-base superalloys.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115580\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325008691\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325008691","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Boron-induced suppression of recrystallization during creep in FeNi-based superalloy
This study investigates the effects of boron on microstructural evolution and creep properties in a FeNi-base superalloy, showing that boron plays a role in significant enhancement of the creep resistance by suppression of recrystallization during creep. Detailed analyses using transmission electron microscopy, atom probe tomography, and electron backscattered diffraction revealed that boron segregates at grain boundaries and at the interface between the matrix and the precipitate, thereby increasing grain boundary cohesion and suppressing dynamic recrystallization. Moreover, boron stabilizes the grain structure by increasing the recrystallization threshold, thus inhibiting recrystallization during creep. The effect of boron in strengthening the grain boundary is particularly pronounced in the creep test with lower strain rate, where it effectively extends the creep rupture life, while this effect is less emphasized in the high temperature tensile test with higher strain rate. These findings suggest that the addition of boron is crucial for the optimization of the high-temperature performance of FeNi-base superalloys.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.