Anique Ahmed , Tahseen Amin Khan Qasuria , Zeeshan Ashraf , Khasan S. Karimov , Noshin Fatima
{"title":"PEDOT: PSS/Bi₂Te₃混合传感器中增强的uv -可见光到红外检测","authors":"Anique Ahmed , Tahseen Amin Khan Qasuria , Zeeshan Ashraf , Khasan S. Karimov , Noshin Fatima","doi":"10.1016/j.materresbull.2025.113784","DOIUrl":null,"url":null,"abstract":"<div><div>Here we report a simple and inexpensive sensor that is capable of measuring a wide range Ultraviolet (UV)-Visible to Infrared (IR) illuminations. The device was fabricated by depositing Poly3,4-ethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS) and Bismuth Telluride (Bi<sub>2</sub>Te<sub>3</sub>) based thin film on FTO glass substrate via drop casting technique. The deposited PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> film was used as an active material to sense UV, Visible, and IR radiations. To investigate the surface morphology of PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> based fabricated sensor, the scanning electron microscopy (SEM) and atomic force microscopy (AFM) were accomplished. UV-Vis absorption spectrum and X-ray diffraction spectroscopy (XRD) were obtained to study the absorption and composition of the fabricated device. The impact of light on the electrical resistance of the device at the frequency of 100 Hz, 120 Hz, and 1 kHz has been examined. The measurements indicate the declining trend in resistance as the intensity of UV, Visible and IR light increased from 0-810 M/m<sup>2</sup>,0-14200 Lux and 0-6850 W/m<sup>2</sup>. The assembled device response shows a splendid sensing performance towards variation in light intensity, with good photoresponse that discloses its potential photodetector applications. Besides, the easy fabrication technique along with inexpensive materials utilized further hoist its significance.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113784"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced UV–visible to infrared detection in PEDOT: PSS/Bi₂Te₃-based hybrid sensor\",\"authors\":\"Anique Ahmed , Tahseen Amin Khan Qasuria , Zeeshan Ashraf , Khasan S. Karimov , Noshin Fatima\",\"doi\":\"10.1016/j.materresbull.2025.113784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here we report a simple and inexpensive sensor that is capable of measuring a wide range Ultraviolet (UV)-Visible to Infrared (IR) illuminations. The device was fabricated by depositing Poly3,4-ethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS) and Bismuth Telluride (Bi<sub>2</sub>Te<sub>3</sub>) based thin film on FTO glass substrate via drop casting technique. The deposited PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> film was used as an active material to sense UV, Visible, and IR radiations. To investigate the surface morphology of PEDOT: PSS/Bi<sub>2</sub>Te<sub>3</sub> based fabricated sensor, the scanning electron microscopy (SEM) and atomic force microscopy (AFM) were accomplished. UV-Vis absorption spectrum and X-ray diffraction spectroscopy (XRD) were obtained to study the absorption and composition of the fabricated device. The impact of light on the electrical resistance of the device at the frequency of 100 Hz, 120 Hz, and 1 kHz has been examined. The measurements indicate the declining trend in resistance as the intensity of UV, Visible and IR light increased from 0-810 M/m<sup>2</sup>,0-14200 Lux and 0-6850 W/m<sup>2</sup>. The assembled device response shows a splendid sensing performance towards variation in light intensity, with good photoresponse that discloses its potential photodetector applications. Besides, the easy fabrication technique along with inexpensive materials utilized further hoist its significance.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113784\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082500491X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082500491X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced UV–visible to infrared detection in PEDOT: PSS/Bi₂Te₃-based hybrid sensor
Here we report a simple and inexpensive sensor that is capable of measuring a wide range Ultraviolet (UV)-Visible to Infrared (IR) illuminations. The device was fabricated by depositing Poly3,4-ethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS) and Bismuth Telluride (Bi2Te3) based thin film on FTO glass substrate via drop casting technique. The deposited PEDOT: PSS/Bi2Te3 film was used as an active material to sense UV, Visible, and IR radiations. To investigate the surface morphology of PEDOT: PSS/Bi2Te3 based fabricated sensor, the scanning electron microscopy (SEM) and atomic force microscopy (AFM) were accomplished. UV-Vis absorption spectrum and X-ray diffraction spectroscopy (XRD) were obtained to study the absorption and composition of the fabricated device. The impact of light on the electrical resistance of the device at the frequency of 100 Hz, 120 Hz, and 1 kHz has been examined. The measurements indicate the declining trend in resistance as the intensity of UV, Visible and IR light increased from 0-810 M/m2,0-14200 Lux and 0-6850 W/m2. The assembled device response shows a splendid sensing performance towards variation in light intensity, with good photoresponse that discloses its potential photodetector applications. Besides, the easy fabrication technique along with inexpensive materials utilized further hoist its significance.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.