Ella C. Kane , Joe Lee , Jonathan M. Pankauski , Rodger E. Cornell , Michael P. Burke
{"title":"探讨NH2 + CH4 + NH3 + CH3的理论与实验数据的差异","authors":"Ella C. Kane , Joe Lee , Jonathan M. Pankauski , Rodger E. Cornell , Michael P. Burke","doi":"10.1016/j.proci.2025.105809","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia has been of great recent interest as a carbon-free fuel amidst growing concern around greenhouse gas emissions. Ammonia’s poor combustion characteristics have motivated exploration of co-combustion of ammonia and various co-fuels to yield more favorable combustion behavior. When the co-fuel is a hydrocarbon, the co-combustion kinetics can involve a host of reactions between nitrogen-containing species and carbon-containing species that are not otherwise important during combustion of either fuel when pure. Recent studies have highlighted hydrogen abstraction from hydrocarbons by NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as an important class of such C-N interaction mechanisms. However, even for NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> + CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> <span><math><mi>⇌</mi></math></span> NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> + CH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is among the simplest and most studied reactions of this reaction class, there is significant disagreement among rate constants from various theoretical and experimental studies. Of particular note, two shock tube studies at high temperatures reported rate constant determinations that differ by a factor of <span><math><mo>∼</mo></math></span>4. Interestingly, both studies use thermal decomposition of a precursor following the shock wave to form NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and then monitor NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> time profiles, but they use different precursors—raising the possibility that secondary reactions unique to each precursor (methylamine or hydrazine) may contribute to the discrepancies. The disagreement between these experimental studies, along with similar disagreement among theoretical studies, makes this an interesting system for analysis using MultiScale Informatics (MSI), which has previously identified consistent explanations of apparently inconsistent data for other reactions. We find, however, that the data reported in one of the shock tube studies are not internally consistent. An MSI model based on the other experimental and theoretical data is found to be consistent with all other data (including for the methylamine precursor) and essentially upholds the other experimental determinations despite significant revisions to the secondary chemistry since the original analysis, including further insights into methylamine chemistry described herein.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105809"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring discrepancies among theoretical and experimental data for NH2 + CH4 ⇌ NH3 + CH3\",\"authors\":\"Ella C. Kane , Joe Lee , Jonathan M. Pankauski , Rodger E. Cornell , Michael P. Burke\",\"doi\":\"10.1016/j.proci.2025.105809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia has been of great recent interest as a carbon-free fuel amidst growing concern around greenhouse gas emissions. Ammonia’s poor combustion characteristics have motivated exploration of co-combustion of ammonia and various co-fuels to yield more favorable combustion behavior. When the co-fuel is a hydrocarbon, the co-combustion kinetics can involve a host of reactions between nitrogen-containing species and carbon-containing species that are not otherwise important during combustion of either fuel when pure. Recent studies have highlighted hydrogen abstraction from hydrocarbons by NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as an important class of such C-N interaction mechanisms. However, even for NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> + CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> <span><math><mi>⇌</mi></math></span> NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> + CH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, which is among the simplest and most studied reactions of this reaction class, there is significant disagreement among rate constants from various theoretical and experimental studies. Of particular note, two shock tube studies at high temperatures reported rate constant determinations that differ by a factor of <span><math><mo>∼</mo></math></span>4. Interestingly, both studies use thermal decomposition of a precursor following the shock wave to form NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and then monitor NH<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> time profiles, but they use different precursors—raising the possibility that secondary reactions unique to each precursor (methylamine or hydrazine) may contribute to the discrepancies. The disagreement between these experimental studies, along with similar disagreement among theoretical studies, makes this an interesting system for analysis using MultiScale Informatics (MSI), which has previously identified consistent explanations of apparently inconsistent data for other reactions. We find, however, that the data reported in one of the shock tube studies are not internally consistent. An MSI model based on the other experimental and theoretical data is found to be consistent with all other data (including for the methylamine precursor) and essentially upholds the other experimental determinations despite significant revisions to the secondary chemistry since the original analysis, including further insights into methylamine chemistry described herein.</div></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"41 \",\"pages\":\"Article 105809\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748925000239\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Exploring discrepancies among theoretical and experimental data for NH2 + CH4 ⇌ NH3 + CH3
Ammonia has been of great recent interest as a carbon-free fuel amidst growing concern around greenhouse gas emissions. Ammonia’s poor combustion characteristics have motivated exploration of co-combustion of ammonia and various co-fuels to yield more favorable combustion behavior. When the co-fuel is a hydrocarbon, the co-combustion kinetics can involve a host of reactions between nitrogen-containing species and carbon-containing species that are not otherwise important during combustion of either fuel when pure. Recent studies have highlighted hydrogen abstraction from hydrocarbons by NH as an important class of such C-N interaction mechanisms. However, even for NH + CH NH + CH, which is among the simplest and most studied reactions of this reaction class, there is significant disagreement among rate constants from various theoretical and experimental studies. Of particular note, two shock tube studies at high temperatures reported rate constant determinations that differ by a factor of 4. Interestingly, both studies use thermal decomposition of a precursor following the shock wave to form NH and then monitor NH time profiles, but they use different precursors—raising the possibility that secondary reactions unique to each precursor (methylamine or hydrazine) may contribute to the discrepancies. The disagreement between these experimental studies, along with similar disagreement among theoretical studies, makes this an interesting system for analysis using MultiScale Informatics (MSI), which has previously identified consistent explanations of apparently inconsistent data for other reactions. We find, however, that the data reported in one of the shock tube studies are not internally consistent. An MSI model based on the other experimental and theoretical data is found to be consistent with all other data (including for the methylamine precursor) and essentially upholds the other experimental determinations despite significant revisions to the secondary chemistry since the original analysis, including further insights into methylamine chemistry described herein.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.