蛋黄壳FeSe2纳米棒的结构工程:用于钠离子电池的高性能阳极

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaoming Ying , Maoxin Yu , Haojie Fan , Zhilong Wu , Yidan Chen , Jie Liang , Xiaohui Huang , Zhiya Lin
{"title":"蛋黄壳FeSe2纳米棒的结构工程:用于钠离子电池的高性能阳极","authors":"Shaoming Ying ,&nbsp;Maoxin Yu ,&nbsp;Haojie Fan ,&nbsp;Zhilong Wu ,&nbsp;Yidan Chen ,&nbsp;Jie Liang ,&nbsp;Xiaohui Huang ,&nbsp;Zhiya Lin","doi":"10.1016/j.mseb.2025.118810","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion batteries (SIBs) are promising for large-scale energy storage due to their safety, low-temperature performance and cost benefits. However, the large size of Na<sup>+</sup> ions causes mechanical stress in electrodes during cycling, leading to capacity loss. This study demonstrates a yolk-shell structured FeSe<sub>2</sub>@nitrogen-doped carbon composite (YS-FeSe<sub>2</sub>@NC) through vapor-phase selenization approach. The YS-FeSe₂@NC anode features an N-doped carbon coating that enhances electrical conductivity and ion transport, along with a precisely designed cavity structure that minimizes volume changes during charge/discharge, leading to excellent electrochemical performance. The anode retains a reversible capacity of 430.4 mAh g<sup>−1</sup> after 2000 cycles at 5 A g<sup>−1</sup>. Ex-situ XPS and SEM analyses show that the improved sodium storage performance of YS-FeSe₂@NC is mainly due to enhanced electrode kinetics and stable SEI formation, both resulting from the combined effects of the yolk-shell structure and N-doped carbon layer.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118810"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural engineering of yolk-shell FeSe2 nanorods: toward high-performance anodes for sodium-ion batteries\",\"authors\":\"Shaoming Ying ,&nbsp;Maoxin Yu ,&nbsp;Haojie Fan ,&nbsp;Zhilong Wu ,&nbsp;Yidan Chen ,&nbsp;Jie Liang ,&nbsp;Xiaohui Huang ,&nbsp;Zhiya Lin\",\"doi\":\"10.1016/j.mseb.2025.118810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sodium-ion batteries (SIBs) are promising for large-scale energy storage due to their safety, low-temperature performance and cost benefits. However, the large size of Na<sup>+</sup> ions causes mechanical stress in electrodes during cycling, leading to capacity loss. This study demonstrates a yolk-shell structured FeSe<sub>2</sub>@nitrogen-doped carbon composite (YS-FeSe<sub>2</sub>@NC) through vapor-phase selenization approach. The YS-FeSe₂@NC anode features an N-doped carbon coating that enhances electrical conductivity and ion transport, along with a precisely designed cavity structure that minimizes volume changes during charge/discharge, leading to excellent electrochemical performance. The anode retains a reversible capacity of 430.4 mAh g<sup>−1</sup> after 2000 cycles at 5 A g<sup>−1</sup>. Ex-situ XPS and SEM analyses show that the improved sodium storage performance of YS-FeSe₂@NC is mainly due to enhanced electrode kinetics and stable SEI formation, both resulting from the combined effects of the yolk-shell structure and N-doped carbon layer.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"323 \",\"pages\":\"Article 118810\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725008347\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725008347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(sib)由于其安全性、低温性能和成本效益,在大规模储能方面具有很大的前景。然而,大尺寸的Na+离子在循环过程中会引起电极的机械应力,导致容量损失。本研究通过气相硒化方法制备了蛋黄壳结构FeSe2@nitrogen-doped碳复合材料(YS-FeSe2@NC)。YS-FeSe₂@NC阳极具有n掺杂碳涂层,可增强导电性和离子输运,以及精确设计的腔结构,可最大限度地减少充放电过程中的体积变化,从而实现优异的电化学性能。在5a g−1下循环2000次后,阳极保持430.4 mAh g−1的可逆容量。非原位XPS和SEM分析表明,YS-FeSe 2 @NC储钠性能的提高主要是由于电极动力学的增强和SEI形成的稳定,这是蛋黄壳结构和n掺杂碳层共同作用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural engineering of yolk-shell FeSe2 nanorods: toward high-performance anodes for sodium-ion batteries
Sodium-ion batteries (SIBs) are promising for large-scale energy storage due to their safety, low-temperature performance and cost benefits. However, the large size of Na+ ions causes mechanical stress in electrodes during cycling, leading to capacity loss. This study demonstrates a yolk-shell structured FeSe2@nitrogen-doped carbon composite (YS-FeSe2@NC) through vapor-phase selenization approach. The YS-FeSe₂@NC anode features an N-doped carbon coating that enhances electrical conductivity and ion transport, along with a precisely designed cavity structure that minimizes volume changes during charge/discharge, leading to excellent electrochemical performance. The anode retains a reversible capacity of 430.4 mAh g−1 after 2000 cycles at 5 A g−1. Ex-situ XPS and SEM analyses show that the improved sodium storage performance of YS-FeSe₂@NC is mainly due to enhanced electrode kinetics and stable SEI formation, both resulting from the combined effects of the yolk-shell structure and N-doped carbon layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信