LED光照下BiVO4/g-C3N4异质结光催化剂的合成及对强力霉素降解的影响

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tien Van Huynh , Bao Gia Tran , Hiep Quang Ha , Vinh Huu Nguyen , Que-Minh T. Doan , Oanh T.K. Nguyen
{"title":"LED光照下BiVO4/g-C3N4异质结光催化剂的合成及对强力霉素降解的影响","authors":"Tien Van Huynh ,&nbsp;Bao Gia Tran ,&nbsp;Hiep Quang Ha ,&nbsp;Vinh Huu Nguyen ,&nbsp;Que-Minh T. Doan ,&nbsp;Oanh T.K. Nguyen","doi":"10.1016/j.mseb.2025.118804","DOIUrl":null,"url":null,"abstract":"<div><div>BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalysts were synthesized via a combustion method for efficient doxycycline (DOX) degradation under visible LED light. The 5BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite showed the best performance, removing 78 % of DOX in 180 min at 0.4 g/L. BiVO<sub>4</sub> incorporation enhanced the properties of g-C<sub>3</sub>N<sub>4</sub> by increasing surface area (10 to 70 m<sup>2</sup>/g) and narrowing the band gap (∼2.7 eV), improving visible light absorption. Electron and superoxide radicals were identified as key reactive species. The composite maintained over 66 % of its initial activity after four cycles, with minimal structural degradation. QSAR analysis also assessed the toxicity of DOX and its intermediates, offering insight into environmental risks. These findings suggest BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> is a promising and stable photocatalyst for removing persistent pollutants from water.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118804"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of BiVO4/g-C3N4 heterojunction photocatalyst for enhanced doxycycline degradation under LED light illumination\",\"authors\":\"Tien Van Huynh ,&nbsp;Bao Gia Tran ,&nbsp;Hiep Quang Ha ,&nbsp;Vinh Huu Nguyen ,&nbsp;Que-Minh T. Doan ,&nbsp;Oanh T.K. Nguyen\",\"doi\":\"10.1016/j.mseb.2025.118804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction photocatalysts were synthesized via a combustion method for efficient doxycycline (DOX) degradation under visible LED light. The 5BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> composite showed the best performance, removing 78 % of DOX in 180 min at 0.4 g/L. BiVO<sub>4</sub> incorporation enhanced the properties of g-C<sub>3</sub>N<sub>4</sub> by increasing surface area (10 to 70 m<sup>2</sup>/g) and narrowing the band gap (∼2.7 eV), improving visible light absorption. Electron and superoxide radicals were identified as key reactive species. The composite maintained over 66 % of its initial activity after four cycles, with minimal structural degradation. QSAR analysis also assessed the toxicity of DOX and its intermediates, offering insight into environmental risks. These findings suggest BiVO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> is a promising and stable photocatalyst for removing persistent pollutants from water.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"323 \",\"pages\":\"Article 118804\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725008281\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725008281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用燃烧法合成了BiVO4/g-C3N4异质结光催化剂,在可见光下高效降解多西环素(DOX)。5BiVO4/g- c3n4复合材料性能最好,在0.4 g/L的浓度下,180 min内可去除78%的DOX。BiVO4的掺入通过增加g- c3n4的表面积(10 ~ 70 m2/g)和缩小带隙(~ 2.7 eV),提高可见光吸收,增强了g- c3n4的性能。电子自由基和超氧自由基被确定为关键的活性物质。经过四个循环后,复合材料保持了超过66%的初始活性,结构降解最小。QSAR分析还评估了DOX及其中间体的毒性,从而深入了解环境风险。这些发现表明BiVO4/g-C3N4是一种有前途的稳定的光催化剂,用于去除水中的持久性污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of BiVO4/g-C3N4 heterojunction photocatalyst for enhanced doxycycline degradation under LED light illumination
BiVO4/g-C3N4 heterojunction photocatalysts were synthesized via a combustion method for efficient doxycycline (DOX) degradation under visible LED light. The 5BiVO4/g-C3N4 composite showed the best performance, removing 78 % of DOX in 180 min at 0.4 g/L. BiVO4 incorporation enhanced the properties of g-C3N4 by increasing surface area (10 to 70 m2/g) and narrowing the band gap (∼2.7 eV), improving visible light absorption. Electron and superoxide radicals were identified as key reactive species. The composite maintained over 66 % of its initial activity after four cycles, with minimal structural degradation. QSAR analysis also assessed the toxicity of DOX and its intermediates, offering insight into environmental risks. These findings suggest BiVO4/g-C3N4 is a promising and stable photocatalyst for removing persistent pollutants from water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信