通过缺陷工程调制ZnO和V和cr掺杂ZnO薄膜的结构、磁性和电学性质

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abdelhamid Ait M’hid , Guojian Li , Zhe Wang , Baoze Zhang , Shang Sun , Mourad Boughrara , Mohamed Kerouad , Qiang Wang
{"title":"通过缺陷工程调制ZnO和V和cr掺杂ZnO薄膜的结构、磁性和电学性质","authors":"Abdelhamid Ait M’hid ,&nbsp;Guojian Li ,&nbsp;Zhe Wang ,&nbsp;Baoze Zhang ,&nbsp;Shang Sun ,&nbsp;Mourad Boughrara ,&nbsp;Mohamed Kerouad ,&nbsp;Qiang Wang","doi":"10.1016/j.mseb.2025.118818","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive investigation of the structural, microstructural, morphological, magnetic, and electrical transport properties of undoped ZnO and transition metal (TM)-doped ZnO films incorporating vanadium (V) and chromium (Cr) at doping levels of 0.2, 0.4, and 0.6 at.%. The films were deposited on glass substrates using RF/DC magnetron co-sputtering technique and thoroughly characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometry (VSM), and Hall effect measurements. XRD analysis confirmed the formation of single-phase wurtzite ZnO with no secondary phases. The lattice parameter <span><math><mi>a</mi></math></span> decreased from 3.255 Å (undoped) to 3.234 Å (0.6 at.% V) and 3.238 Å (0.6 at.% Cr), indicating substitutional incorporation of smaller V<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> and Cr<sup>3+</sup> ions. Crystallite size decreased from 17.149 nm (undoped) to 11.251 nm (0.6 at.% V) and 12.037 nm (0.6 at.% Cr), accompanied by increased strain and dislocation density. SEM and AFM studies revealed significant grain refinement and surface roughness evolution, with RMS roughness increasing to 14.3 <span><math><mo>±</mo></math></span> 2.3 nm for V-doped films and 14.9 <span><math><mo>±</mo></math></span> 1.5 nm for Cr-doped films, compared to 12.1 <span><math><mo>±</mo></math></span> 1.1 nm for undoped ZnO. Magnetic measurements confirmed room-temperature ferromagnetism, with maximum saturation magnetization (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) values of 5.41 emu/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> for 0.6 at.% V and 7.10 emu/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> for 0.4 at.% Cr. Remanent magnetization (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) followed a similar trend, consistent with the formation of bound magnetic polarons (BMPs) mediated by oxygen vacancies. Hall effect measurements revealed <span><math><mi>n</mi></math></span>-type conductivity in all samples, with carrier concentration decreasing from <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (undoped) to <span><math><mrow><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (0.6 at.% V) and <span><math><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (0.6 at.% Cr). A corresponding increase in resistivity was also observed upon doping, confirming the role of V and Cr as acceptor-like defects. Transport measurements as a function of temperature and magnetic field further confirmed the presence of a defect-induced conduction mechanism, highlighting the interaction between structural disorder and magnetic/electrical behavior. These results provide valuable insights into defect engineering strategies for tailoring the multifunctional properties of ZnO-based diluted magnetic semiconductors, with promising implications for spintronic devices, magnetoresistive sensors, and charge transport-based electronic applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118818"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, magnetic, and electrical property modulation in ZnO and V- and Cr-doped ZnO films via defect engineering\",\"authors\":\"Abdelhamid Ait M’hid ,&nbsp;Guojian Li ,&nbsp;Zhe Wang ,&nbsp;Baoze Zhang ,&nbsp;Shang Sun ,&nbsp;Mourad Boughrara ,&nbsp;Mohamed Kerouad ,&nbsp;Qiang Wang\",\"doi\":\"10.1016/j.mseb.2025.118818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive investigation of the structural, microstructural, morphological, magnetic, and electrical transport properties of undoped ZnO and transition metal (TM)-doped ZnO films incorporating vanadium (V) and chromium (Cr) at doping levels of 0.2, 0.4, and 0.6 at.%. The films were deposited on glass substrates using RF/DC magnetron co-sputtering technique and thoroughly characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometry (VSM), and Hall effect measurements. XRD analysis confirmed the formation of single-phase wurtzite ZnO with no secondary phases. The lattice parameter <span><math><mi>a</mi></math></span> decreased from 3.255 Å (undoped) to 3.234 Å (0.6 at.% V) and 3.238 Å (0.6 at.% Cr), indicating substitutional incorporation of smaller V<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> and Cr<sup>3+</sup> ions. Crystallite size decreased from 17.149 nm (undoped) to 11.251 nm (0.6 at.% V) and 12.037 nm (0.6 at.% Cr), accompanied by increased strain and dislocation density. SEM and AFM studies revealed significant grain refinement and surface roughness evolution, with RMS roughness increasing to 14.3 <span><math><mo>±</mo></math></span> 2.3 nm for V-doped films and 14.9 <span><math><mo>±</mo></math></span> 1.5 nm for Cr-doped films, compared to 12.1 <span><math><mo>±</mo></math></span> 1.1 nm for undoped ZnO. Magnetic measurements confirmed room-temperature ferromagnetism, with maximum saturation magnetization (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) values of 5.41 emu/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> for 0.6 at.% V and 7.10 emu/cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> for 0.4 at.% Cr. Remanent magnetization (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) followed a similar trend, consistent with the formation of bound magnetic polarons (BMPs) mediated by oxygen vacancies. Hall effect measurements revealed <span><math><mi>n</mi></math></span>-type conductivity in all samples, with carrier concentration decreasing from <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (undoped) to <span><math><mrow><mn>2</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>13</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (0.6 at.% V) and <span><math><mrow><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup> (0.6 at.% Cr). A corresponding increase in resistivity was also observed upon doping, confirming the role of V and Cr as acceptor-like defects. Transport measurements as a function of temperature and magnetic field further confirmed the presence of a defect-induced conduction mechanism, highlighting the interaction between structural disorder and magnetic/electrical behavior. These results provide valuable insights into defect engineering strategies for tailoring the multifunctional properties of ZnO-based diluted magnetic semiconductors, with promising implications for spintronic devices, magnetoresistive sensors, and charge transport-based electronic applications.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"323 \",\"pages\":\"Article 118818\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725008426\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725008426","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究对掺杂钒(V)和铬(Cr)的未掺杂ZnO和过渡金属(TM)掺杂ZnO薄膜在掺杂浓度为0.2、0.4和0.6 at.%时的结构、微观结构、形态、磁性和电输运特性进行了全面的研究。采用RF/DC磁控共溅射技术将薄膜沉积在玻璃衬底上,并通过x射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、能量色散x射线能谱(EDX)、振动样品磁强计(VSM)和霍尔效应测量对薄膜进行了全面表征。XRD分析证实形成了无二次相的单相纤锌矿ZnO。晶格参数a从3.255 Å(未掺杂)降低到3.234 Å (0.6 at)。% V)和3.238 Å (0.6 at。% Cr),表明更小的V3+和Cr3+离子的取代掺入。晶粒尺寸从17.149 nm(未掺杂)减小到11.251 nm (0.6 at)。% V)和12.037 nm (0.6 at)。% Cr),伴随着应变和位错密度的增加。扫描电镜(SEM)和原子力显微镜(AFM)的研究表明,与未掺杂ZnO的12.1±1.1 nm相比,v掺杂薄膜的RMS粗糙度增加到14.3±2.3 nm, cr掺杂薄膜的RMS粗糙度增加到14.9±1.5 nm。磁测量证实了室温铁磁性,0.6 at的最大饱和磁化(Ms)值为5.41 emu/cm3。% V和7.10 emu/cm3 0.4 at。剩余磁化强度(Mr)也有类似的趋势,与氧空位介导的束缚极化子(BMPs)的形成一致。霍尔效应测量显示,所有样品的n型电导率,载流子浓度从1.0×1015 cm−3(未掺杂)降低到2.1×1013 cm−3 (0.6 at)。% V)和1.2×1014 cm−3 (0.6 at)。% Cr)。在掺杂后也观察到相应的电阻率增加,证实了V和Cr作为受体样缺陷的作用。输运测量作为温度和磁场的函数进一步证实了缺陷诱导传导机制的存在,突出了结构紊乱与磁/电行为之间的相互作用。这些结果为定制zno基稀释磁性半导体的多功能特性的缺陷工程策略提供了有价值的见解,对自旋电子器件、磁阻传感器和基于电荷输运的电子应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural, magnetic, and electrical property modulation in ZnO and V- and Cr-doped ZnO films via defect engineering

Structural, magnetic, and electrical property modulation in ZnO and V- and Cr-doped ZnO films via defect engineering
This study presents a comprehensive investigation of the structural, microstructural, morphological, magnetic, and electrical transport properties of undoped ZnO and transition metal (TM)-doped ZnO films incorporating vanadium (V) and chromium (Cr) at doping levels of 0.2, 0.4, and 0.6 at.%. The films were deposited on glass substrates using RF/DC magnetron co-sputtering technique and thoroughly characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometry (VSM), and Hall effect measurements. XRD analysis confirmed the formation of single-phase wurtzite ZnO with no secondary phases. The lattice parameter a decreased from 3.255 Å (undoped) to 3.234 Å (0.6 at.% V) and 3.238 Å (0.6 at.% Cr), indicating substitutional incorporation of smaller V3+ and Cr3+ ions. Crystallite size decreased from 17.149 nm (undoped) to 11.251 nm (0.6 at.% V) and 12.037 nm (0.6 at.% Cr), accompanied by increased strain and dislocation density. SEM and AFM studies revealed significant grain refinement and surface roughness evolution, with RMS roughness increasing to 14.3 ± 2.3 nm for V-doped films and 14.9 ± 1.5 nm for Cr-doped films, compared to 12.1 ± 1.1 nm for undoped ZnO. Magnetic measurements confirmed room-temperature ferromagnetism, with maximum saturation magnetization (Ms) values of 5.41 emu/cm3 for 0.6 at.% V and 7.10 emu/cm3 for 0.4 at.% Cr. Remanent magnetization (Mr) followed a similar trend, consistent with the formation of bound magnetic polarons (BMPs) mediated by oxygen vacancies. Hall effect measurements revealed n-type conductivity in all samples, with carrier concentration decreasing from 1.0×1015 cm−3 (undoped) to 2.1×1013 cm−3 (0.6 at.% V) and 1.2×1014 cm−3 (0.6 at.% Cr). A corresponding increase in resistivity was also observed upon doping, confirming the role of V and Cr as acceptor-like defects. Transport measurements as a function of temperature and magnetic field further confirmed the presence of a defect-induced conduction mechanism, highlighting the interaction between structural disorder and magnetic/electrical behavior. These results provide valuable insights into defect engineering strategies for tailoring the multifunctional properties of ZnO-based diluted magnetic semiconductors, with promising implications for spintronic devices, magnetoresistive sensors, and charge transport-based electronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信