fe2o3双相HEA对铅铋共晶中氧变化的相特异性腐蚀响应

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuxin Lou , Zhao Shen , Ziye Dong , Kun Zhang , Jiaqi Li , Yiheng Wu , Zhenfei Jiang , Hao Wang , Yang Ding , Xintao Zhang , You Wang , Kai Chen , Xiaoqin Zeng
{"title":"fe2o3双相HEA对铅铋共晶中氧变化的相特异性腐蚀响应","authors":"Yuxin Lou ,&nbsp;Zhao Shen ,&nbsp;Ziye Dong ,&nbsp;Kun Zhang ,&nbsp;Jiaqi Li ,&nbsp;Yiheng Wu ,&nbsp;Zhenfei Jiang ,&nbsp;Hao Wang ,&nbsp;Yang Ding ,&nbsp;Xintao Zhang ,&nbsp;You Wang ,&nbsp;Kai Chen ,&nbsp;Xiaoqin Zeng","doi":"10.1016/j.corsci.2025.113354","DOIUrl":null,"url":null,"abstract":"<div><div>This study elucidates the phase-specific corrosion mechanisms of a FeCrNiAl dual-phase high-entropy alloy (DP-HEA) in lead-bismuth eutectic (LBE) at 500 °C under two representative oxygen concentrations (10⁻⁴ wt% and 10⁻⁷ wt%). Through systematic multi-scale characterization, we reveal a sharp mechanistic transition from oxidation to selective dissolution governed by the dissolved oxygen content. In oxygen-saturated LBE, the Al-rich BCC matrix phase preferentially oxidizes to form a porous FeAl₂O₄ spinel network, while the FCC matrix phase exhibits superior oxidation resistance owing to the formation of Cr-rich oxides. Conversely, in oxygen-deficient LBE, the FCC phase undergoes rapid Ni depletion, structural destabilization, and phase transformation into BCC, whereas the BCC phase—stabilized by B2-NiAl and Fe–Cr intermetallics—remains largely intact. These findings demonstrate the opposing roles of FCC and BCC matrix phases in resisting oxidation and dissolution, respectively, and highlight the importance of oxygen activity in dictating corrosion pathways. A unified mechanistic framework is proposed to describe the corrosion evolution under varying oxygen conditions, providing critical insights for the design of LBE-compatible structural materials for lead-cooled fast reactors.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113354"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-specific corrosion responses of FeCrNiAl dual-phase HEA to oxygen variations in lead-bismuth eutectic\",\"authors\":\"Yuxin Lou ,&nbsp;Zhao Shen ,&nbsp;Ziye Dong ,&nbsp;Kun Zhang ,&nbsp;Jiaqi Li ,&nbsp;Yiheng Wu ,&nbsp;Zhenfei Jiang ,&nbsp;Hao Wang ,&nbsp;Yang Ding ,&nbsp;Xintao Zhang ,&nbsp;You Wang ,&nbsp;Kai Chen ,&nbsp;Xiaoqin Zeng\",\"doi\":\"10.1016/j.corsci.2025.113354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study elucidates the phase-specific corrosion mechanisms of a FeCrNiAl dual-phase high-entropy alloy (DP-HEA) in lead-bismuth eutectic (LBE) at 500 °C under two representative oxygen concentrations (10⁻⁴ wt% and 10⁻⁷ wt%). Through systematic multi-scale characterization, we reveal a sharp mechanistic transition from oxidation to selective dissolution governed by the dissolved oxygen content. In oxygen-saturated LBE, the Al-rich BCC matrix phase preferentially oxidizes to form a porous FeAl₂O₄ spinel network, while the FCC matrix phase exhibits superior oxidation resistance owing to the formation of Cr-rich oxides. Conversely, in oxygen-deficient LBE, the FCC phase undergoes rapid Ni depletion, structural destabilization, and phase transformation into BCC, whereas the BCC phase—stabilized by B2-NiAl and Fe–Cr intermetallics—remains largely intact. These findings demonstrate the opposing roles of FCC and BCC matrix phases in resisting oxidation and dissolution, respectively, and highlight the importance of oxygen activity in dictating corrosion pathways. A unified mechanistic framework is proposed to describe the corrosion evolution under varying oxygen conditions, providing critical insights for the design of LBE-compatible structural materials for lead-cooled fast reactors.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113354\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006821\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006821","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究阐明了一种FeCrNiAl双相高熵合金(DP-HEA)在500°C铅铋共晶(LBE)中在两种代表性氧浓度(10⁻⁴wt%和10⁻⁷wt%)下的相特异性腐蚀机制。通过系统的多尺度表征,我们揭示了由溶解氧含量控制的从氧化到选择性溶解的急剧机制转变。在氧饱和LBE中,富al的BCC基体相优先氧化形成多孔FeAl₂O₄尖晶石网络,而FCC基体相由于形成富cr氧化物而表现出优异的抗氧化性。相反,在缺氧LBE中,FCC相经历了快速的Ni耗尽、结构不稳定和向BCC的相变,而BCC相由B2-NiAl和Fe-Cr金属间化合物稳定,基本保持完整。这些发现证明了FCC和BCC基质相在抗氧化和抗溶解方面的相反作用,并强调了氧活性在决定腐蚀途径中的重要性。提出了一个统一的机制框架来描述不同氧条件下的腐蚀演变,为设计lbe兼容的铅冷快堆结构材料提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-specific corrosion responses of FeCrNiAl dual-phase HEA to oxygen variations in lead-bismuth eutectic
This study elucidates the phase-specific corrosion mechanisms of a FeCrNiAl dual-phase high-entropy alloy (DP-HEA) in lead-bismuth eutectic (LBE) at 500 °C under two representative oxygen concentrations (10⁻⁴ wt% and 10⁻⁷ wt%). Through systematic multi-scale characterization, we reveal a sharp mechanistic transition from oxidation to selective dissolution governed by the dissolved oxygen content. In oxygen-saturated LBE, the Al-rich BCC matrix phase preferentially oxidizes to form a porous FeAl₂O₄ spinel network, while the FCC matrix phase exhibits superior oxidation resistance owing to the formation of Cr-rich oxides. Conversely, in oxygen-deficient LBE, the FCC phase undergoes rapid Ni depletion, structural destabilization, and phase transformation into BCC, whereas the BCC phase—stabilized by B2-NiAl and Fe–Cr intermetallics—remains largely intact. These findings demonstrate the opposing roles of FCC and BCC matrix phases in resisting oxidation and dissolution, respectively, and highlight the importance of oxygen activity in dictating corrosion pathways. A unified mechanistic framework is proposed to describe the corrosion evolution under varying oxygen conditions, providing critical insights for the design of LBE-compatible structural materials for lead-cooled fast reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信