统计力学中的熵涨落2。量子动力学系统

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
T. Benoist, L. Bruneau, V. Jakšić, A. Panati, C.-A. Pillet
{"title":"统计力学中的熵涨落2。量子动力学系统","authors":"T. Benoist,&nbsp;L. Bruneau,&nbsp;V. Jakšić,&nbsp;A. Panati,&nbsp;C.-A. Pillet","doi":"10.1007/s00220-025-05360-z","DOIUrl":null,"url":null,"abstract":"<div><p>The celebrated Evans–Searles, respectively Gallavotti–Cohen, fluctuation theorem concerns certain universal statistical features of the entropy production rate of a classical system in a transient, respectively steady, state. In this paper, we consider and compare several possible extensions of these fluctuation theorems to quantum systems. In addition to the direct two-time measurement approach whose discussion is based on Benoist et al. (Lett Math Phys 114:32, 2024. https://doi.org/10.1007/s11005-024-01777-0), we discuss a variant where measurements are performed indirectly on an auxiliary system called ancilla, and which allows to retrieve non-trivial statistical information using ancilla state tomography. We also show that modular theory provides a way to extend the classical notion of phase space contraction rate to the quantum domain, which leads to a third extension of the fluctuation theorems. We further discuss the quantum version of the principle of regular entropic fluctuations, introduced in the classical context in Jakšić et al. (Nonlinearity 24:699, 2011. https://doi.org/10.1088/0951-7715/24/3/003). Finally, we relate the statistical properties of these various notions of entropy production to spectral resonances of quantum transfer operators. The obtained results shed a new light on the nature of entropic fluctuations in quantum statistical mechanics.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05360-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Entropic Fluctuations in Statistical Mechanics II. Quantum Dynamical Systems\",\"authors\":\"T. Benoist,&nbsp;L. Bruneau,&nbsp;V. Jakšić,&nbsp;A. Panati,&nbsp;C.-A. Pillet\",\"doi\":\"10.1007/s00220-025-05360-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The celebrated Evans–Searles, respectively Gallavotti–Cohen, fluctuation theorem concerns certain universal statistical features of the entropy production rate of a classical system in a transient, respectively steady, state. In this paper, we consider and compare several possible extensions of these fluctuation theorems to quantum systems. In addition to the direct two-time measurement approach whose discussion is based on Benoist et al. (Lett Math Phys 114:32, 2024. https://doi.org/10.1007/s11005-024-01777-0), we discuss a variant where measurements are performed indirectly on an auxiliary system called ancilla, and which allows to retrieve non-trivial statistical information using ancilla state tomography. We also show that modular theory provides a way to extend the classical notion of phase space contraction rate to the quantum domain, which leads to a third extension of the fluctuation theorems. We further discuss the quantum version of the principle of regular entropic fluctuations, introduced in the classical context in Jakšić et al. (Nonlinearity 24:699, 2011. https://doi.org/10.1088/0951-7715/24/3/003). Finally, we relate the statistical properties of these various notions of entropy production to spectral resonances of quantum transfer operators. The obtained results shed a new light on the nature of entropic fluctuations in quantum statistical mechanics.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05360-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05360-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05360-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

著名的Evans-Searles涨落定理,分别是Gallavotti-Cohen涨落定理,涉及经典系统在瞬态(分别是稳态)状态下熵产率的某些普遍统计特征。在本文中,我们考虑并比较了这些涨落定理在量子系统中的几种可能的推广。除了直接的两次测量方法,其讨论是基于Benoist等人(Lett Math physics 114:32, 2024)。https://doi.org/10.1007/s11005-024-01777-0),我们讨论了一种变体,其中测量间接地在称为辅助系统的辅助系统上执行,并且允许使用辅助状态断层扫描检索非平凡的统计信息。我们还证明了模理论提供了一种将相空间收缩率的经典概念扩展到量子域的方法,从而导致涨落定理的第三次扩展。我们进一步讨论了正则熵涨落原理的量子版本,在Jakšić等人的经典背景下引入(非线性24:699,2011)。https://doi.org/10.1088/0951-7715/24/3/003)。最后,我们将这些不同的熵产生概念的统计性质与量子转移算子的谱共振联系起来。所得结果对量子统计力学中熵涨落的性质有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropic Fluctuations in Statistical Mechanics II. Quantum Dynamical Systems

The celebrated Evans–Searles, respectively Gallavotti–Cohen, fluctuation theorem concerns certain universal statistical features of the entropy production rate of a classical system in a transient, respectively steady, state. In this paper, we consider and compare several possible extensions of these fluctuation theorems to quantum systems. In addition to the direct two-time measurement approach whose discussion is based on Benoist et al. (Lett Math Phys 114:32, 2024. https://doi.org/10.1007/s11005-024-01777-0), we discuss a variant where measurements are performed indirectly on an auxiliary system called ancilla, and which allows to retrieve non-trivial statistical information using ancilla state tomography. We also show that modular theory provides a way to extend the classical notion of phase space contraction rate to the quantum domain, which leads to a third extension of the fluctuation theorems. We further discuss the quantum version of the principle of regular entropic fluctuations, introduced in the classical context in Jakšić et al. (Nonlinearity 24:699, 2011. https://doi.org/10.1088/0951-7715/24/3/003). Finally, we relate the statistical properties of these various notions of entropy production to spectral resonances of quantum transfer operators. The obtained results shed a new light on the nature of entropic fluctuations in quantum statistical mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信