{"title":"等离子体电催化级联合成氘化氨","authors":"Kaiwen Yang, Yanmei Huang, Runchao Qin, Qixing Wang, Shuhe Han, Bin Zhang, Yifu Yu","doi":"10.1002/anie.202515856","DOIUrl":null,"url":null,"abstract":"Deuterated ammonia (ND<jats:sub>3</jats:sub>) exhibits growing market demand in the fields of chemical analysis, pharmaceutical industry and semiconductor manufacturing. Currently, industrial production of ND<jats:sub>3</jats:sub> relies on harsh conditions and complex processes, leading to high production cost and security risk. Herein, we propose a sustainable relay strategy to produce ND<jats:sub>3</jats:sub> by using air and deuterium oxide (D<jats:sub>2</jats:sub>O) as raw materials, including plasma‐driven air‐to‐NO<jats:sub>x</jats:sub> conversion and electrocatalytic NO<jats:sub>x</jats:sub><jats:sup>–</jats:sup>‐to‐ND<jats:sub>3</jats:sub> conversion. The insufficient supply of reactive deuterium (*D) leads to sluggish kinetics of electrocatalytic deuterium reaction. The well‐designed F modified cobalt (F–Co) catalyst exhibits a remarkable yield of 0.75 mmol h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup> and a Faradaic efficiency of 80.43% for ND<jats:sub>3</jats:sub> at 200 mA cm<jats:sup>−2</jats:sup>. The combined results of characterizations reveal that fluorine (F) atom can boost D<jats:sub>2</jats:sub>O dissociation and suppress competing deuterium evolution reaction, thereby providing abundant *D for deuteration reaction. Notably, a pilot‐scale demonstration system, consisting of non‐thermal plasma, flow electrolyzer, air stripping and ammonia absorber, is constructed to produce practicable ND<jats:sub>3</jats:sub> solution (2.8 wt%) with ∼21.45 mmol h<jats:sup>−1</jats:sup> ND<jats:sub>3</jats:sub> production capability by using air and D<jats:sub>2</jats:sub>O as sources.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":"e202515856"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma‐Electrocatalysis Cascade Synthesis of Deuterated Ammonia\",\"authors\":\"Kaiwen Yang, Yanmei Huang, Runchao Qin, Qixing Wang, Shuhe Han, Bin Zhang, Yifu Yu\",\"doi\":\"10.1002/anie.202515856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deuterated ammonia (ND<jats:sub>3</jats:sub>) exhibits growing market demand in the fields of chemical analysis, pharmaceutical industry and semiconductor manufacturing. Currently, industrial production of ND<jats:sub>3</jats:sub> relies on harsh conditions and complex processes, leading to high production cost and security risk. Herein, we propose a sustainable relay strategy to produce ND<jats:sub>3</jats:sub> by using air and deuterium oxide (D<jats:sub>2</jats:sub>O) as raw materials, including plasma‐driven air‐to‐NO<jats:sub>x</jats:sub> conversion and electrocatalytic NO<jats:sub>x</jats:sub><jats:sup>–</jats:sup>‐to‐ND<jats:sub>3</jats:sub> conversion. The insufficient supply of reactive deuterium (*D) leads to sluggish kinetics of electrocatalytic deuterium reaction. The well‐designed F modified cobalt (F–Co) catalyst exhibits a remarkable yield of 0.75 mmol h<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup> and a Faradaic efficiency of 80.43% for ND<jats:sub>3</jats:sub> at 200 mA cm<jats:sup>−2</jats:sup>. The combined results of characterizations reveal that fluorine (F) atom can boost D<jats:sub>2</jats:sub>O dissociation and suppress competing deuterium evolution reaction, thereby providing abundant *D for deuteration reaction. Notably, a pilot‐scale demonstration system, consisting of non‐thermal plasma, flow electrolyzer, air stripping and ammonia absorber, is constructed to produce practicable ND<jats:sub>3</jats:sub> solution (2.8 wt%) with ∼21.45 mmol h<jats:sup>−1</jats:sup> ND<jats:sub>3</jats:sub> production capability by using air and D<jats:sub>2</jats:sub>O as sources.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"19 1\",\"pages\":\"e202515856\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515856\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515856","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Plasma‐Electrocatalysis Cascade Synthesis of Deuterated Ammonia
Deuterated ammonia (ND3) exhibits growing market demand in the fields of chemical analysis, pharmaceutical industry and semiconductor manufacturing. Currently, industrial production of ND3 relies on harsh conditions and complex processes, leading to high production cost and security risk. Herein, we propose a sustainable relay strategy to produce ND3 by using air and deuterium oxide (D2O) as raw materials, including plasma‐driven air‐to‐NOx conversion and electrocatalytic NOx–‐to‐ND3 conversion. The insufficient supply of reactive deuterium (*D) leads to sluggish kinetics of electrocatalytic deuterium reaction. The well‐designed F modified cobalt (F–Co) catalyst exhibits a remarkable yield of 0.75 mmol h−1 cm−2 and a Faradaic efficiency of 80.43% for ND3 at 200 mA cm−2. The combined results of characterizations reveal that fluorine (F) atom can boost D2O dissociation and suppress competing deuterium evolution reaction, thereby providing abundant *D for deuteration reaction. Notably, a pilot‐scale demonstration system, consisting of non‐thermal plasma, flow electrolyzer, air stripping and ammonia absorber, is constructed to produce practicable ND3 solution (2.8 wt%) with ∼21.45 mmol h−1 ND3 production capability by using air and D2O as sources.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.