半导体废弃物衍生的LiGaO2:聚合物电解质中结晶、离子传输和稳定性的多功能调节剂

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Weiliang Gong, Jianming Tao, Yanhuang Cai, Junlin Wu, Zhicheng Zhang, Chenlong Chen, Zhigao Huang, Yingbin Lin
{"title":"半导体废弃物衍生的LiGaO2:聚合物电解质中结晶、离子传输和稳定性的多功能调节剂","authors":"Weiliang Gong, Jianming Tao, Yanhuang Cai, Junlin Wu, Zhicheng Zhang, Chenlong Chen, Zhigao Huang, Yingbin Lin","doi":"10.1063/5.0281318","DOIUrl":null,"url":null,"abstract":"Succinonitrile (SN)-based composite polymer electrolytes offer high ionic conductivity and flexibility for solid-state lithium metal batteries (SSLMBs); however, they suffer from cyano group-induced interfacial side reactions and PVDF's crystallinity-driven performance limitations. Herein, we introduce semiconductor waste-derived LiGaO2 (LGO) as a multifunctional additive to address these challenges. LGO's high-dielectric constant modulates PVDF-HFP crystallization into disordered amorphous domains, reducing interfacial resistance and enhancing exchange current density. Simultaneously, LGO promotes LiTFSI dissociation via dipole interactions while anchoring SN molecules, suppressing migration and side reactions. The optimized electrolyte achieves an ionic conductivity of 1.24 × 10−3 S·cm−1, a transference number of 0.67, an activation energy of 0.13 eV, and a critical current density of 0.8 mA·cm−2 at 45 °C. Symmetric Li cells show stable cycling, while LiCoO2/Li batteries exhibit superior rate performance (111.8 mAh·g−1 at 2 C) and retain 61.4% capacity after 100 cycles at 0.5 C with 99.2% average Coulombic efficiency. These findings reveal the core mechanism of high-dielectric constant nanomaterials in regulating crystallization kinetics and promoting internal ionic transport in multicomponent polymer electrolytes, providing new directions for the development of SSLMBs.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"37 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor waste-derived LiGaO2: A multifunctional regulator for crystallization, ion transport, and stability in polymer electrolytes\",\"authors\":\"Weiliang Gong, Jianming Tao, Yanhuang Cai, Junlin Wu, Zhicheng Zhang, Chenlong Chen, Zhigao Huang, Yingbin Lin\",\"doi\":\"10.1063/5.0281318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Succinonitrile (SN)-based composite polymer electrolytes offer high ionic conductivity and flexibility for solid-state lithium metal batteries (SSLMBs); however, they suffer from cyano group-induced interfacial side reactions and PVDF's crystallinity-driven performance limitations. Herein, we introduce semiconductor waste-derived LiGaO2 (LGO) as a multifunctional additive to address these challenges. LGO's high-dielectric constant modulates PVDF-HFP crystallization into disordered amorphous domains, reducing interfacial resistance and enhancing exchange current density. Simultaneously, LGO promotes LiTFSI dissociation via dipole interactions while anchoring SN molecules, suppressing migration and side reactions. The optimized electrolyte achieves an ionic conductivity of 1.24 × 10−3 S·cm−1, a transference number of 0.67, an activation energy of 0.13 eV, and a critical current density of 0.8 mA·cm−2 at 45 °C. Symmetric Li cells show stable cycling, while LiCoO2/Li batteries exhibit superior rate performance (111.8 mAh·g−1 at 2 C) and retain 61.4% capacity after 100 cycles at 0.5 C with 99.2% average Coulombic efficiency. These findings reveal the core mechanism of high-dielectric constant nanomaterials in regulating crystallization kinetics and promoting internal ionic transport in multicomponent polymer electrolytes, providing new directions for the development of SSLMBs.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0281318\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0281318","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

丁二腈(SN)基复合聚合物电解质为固态锂金属电池(sslmb)提供高离子导电性和灵活性;然而,它们受到氰基引起的界面副反应和PVDF的结晶度驱动的性能限制。在此,我们引入半导体废物衍生的LiGaO2 (LGO)作为多功能添加剂来解决这些挑战。LGO的高介电常数调制了PVDF-HFP结晶成无序的非晶畴,降低了界面电阻,提高了交换电流密度。同时,LGO通过偶极相互作用促进LiTFSI解离,同时锚定SN分子,抑制迁移和副反应。优化后的电解质在45℃时的离子电导率为1.24 × 10−3 S·cm−1,转移数为0.67,活化能为0.13 eV,临界电流密度为0.8 mA·cm−2。对称锂电池表现出稳定的循环性能,而LiCoO2/Li电池表现出优异的倍率性能(2℃时为111.8 mAh·g−1),在0.5℃下循环100次后容量保持61.4%,平均库仑效率为99.2%。这些发现揭示了高介电常数纳米材料在多组分聚合物电解质中调控结晶动力学和促进内部离子传输的核心机制,为sslmb的发展提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semiconductor waste-derived LiGaO2: A multifunctional regulator for crystallization, ion transport, and stability in polymer electrolytes
Succinonitrile (SN)-based composite polymer electrolytes offer high ionic conductivity and flexibility for solid-state lithium metal batteries (SSLMBs); however, they suffer from cyano group-induced interfacial side reactions and PVDF's crystallinity-driven performance limitations. Herein, we introduce semiconductor waste-derived LiGaO2 (LGO) as a multifunctional additive to address these challenges. LGO's high-dielectric constant modulates PVDF-HFP crystallization into disordered amorphous domains, reducing interfacial resistance and enhancing exchange current density. Simultaneously, LGO promotes LiTFSI dissociation via dipole interactions while anchoring SN molecules, suppressing migration and side reactions. The optimized electrolyte achieves an ionic conductivity of 1.24 × 10−3 S·cm−1, a transference number of 0.67, an activation energy of 0.13 eV, and a critical current density of 0.8 mA·cm−2 at 45 °C. Symmetric Li cells show stable cycling, while LiCoO2/Li batteries exhibit superior rate performance (111.8 mAh·g−1 at 2 C) and retain 61.4% capacity after 100 cycles at 0.5 C with 99.2% average Coulombic efficiency. These findings reveal the core mechanism of high-dielectric constant nanomaterials in regulating crystallization kinetics and promoting internal ionic transport in multicomponent polymer electrolytes, providing new directions for the development of SSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信