可编程催化参数不确定的催化共振理论

IF 11.6 Q1 CHEMISTRY, PHYSICAL
Sallye R. Gathmann, Seongjoo Jung, Paul J. Dauenhauer
{"title":"可编程催化参数不确定的催化共振理论","authors":"Sallye R. Gathmann, Seongjoo Jung, Paul J. Dauenhauer","doi":"10.1016/j.checat.2025.101523","DOIUrl":null,"url":null,"abstract":"Microkinetic models are useful tools for screening catalytic materials; however, errors in their input parameters can lead to significant uncertainty in model predictions of catalyst performance. Here, we investigate the impact of linear scaling and Brønsted-Evans-Polanyi relation parametric uncertainty on microkinetic predictions of programmable-catalyst performance. Two case studies are considered: a generic A-to-B prototype reaction and the oxygen evolution reaction (OER). The results show that error-unaware models can accurately predict trends and, for the prototype reaction, values of optimal waveform parameters. The specific model parameters driving output uncertainty are identified via variance-based global sensitivity analysis. However, predictions of dynamic rate enhancement can decrease when uncertainty is propagated into the models. In both cases, we identify operating conditions where the programmable catalyst achieves a rate enhancement of at least one order of magnitude despite parametric uncertainty in the model, supporting programmable catalysis as a viable strategy for exceeding the Sabatier limit.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"15 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic resonance theory for parametric uncertainty of programmable catalysis\",\"authors\":\"Sallye R. Gathmann, Seongjoo Jung, Paul J. Dauenhauer\",\"doi\":\"10.1016/j.checat.2025.101523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microkinetic models are useful tools for screening catalytic materials; however, errors in their input parameters can lead to significant uncertainty in model predictions of catalyst performance. Here, we investigate the impact of linear scaling and Brønsted-Evans-Polanyi relation parametric uncertainty on microkinetic predictions of programmable-catalyst performance. Two case studies are considered: a generic A-to-B prototype reaction and the oxygen evolution reaction (OER). The results show that error-unaware models can accurately predict trends and, for the prototype reaction, values of optimal waveform parameters. The specific model parameters driving output uncertainty are identified via variance-based global sensitivity analysis. However, predictions of dynamic rate enhancement can decrease when uncertainty is propagated into the models. In both cases, we identify operating conditions where the programmable catalyst achieves a rate enhancement of at least one order of magnitude despite parametric uncertainty in the model, supporting programmable catalysis as a viable strategy for exceeding the Sabatier limit.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

微动力学模型是筛选催化材料的有效工具;然而,输入参数的误差会导致催化剂性能模型预测的显著不确定性。在这里,我们研究了线性缩放和Brønsted-Evans-Polanyi关系参数不确定性对可编程催化剂性能微动力学预测的影响。考虑两个案例研究:一般a -to- b原型反应和析氧反应(OER)。结果表明,无误差模型可以准确地预测趋势,对于原型反应,可以准确地预测最佳波形参数的值。通过基于方差的全局灵敏度分析,确定了驱动输出不确定性的具体模型参数。然而,当不确定性传播到模型中时,动态速率增强的预测可能会降低。在这两种情况下,我们确定了操作条件,其中可编程催化剂实现了至少一个数量级的速率提高,尽管模型中存在参数不确定性,支持可编程催化剂作为超越Sabatier极限的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalytic resonance theory for parametric uncertainty of programmable catalysis

Catalytic resonance theory for parametric uncertainty of programmable catalysis
Microkinetic models are useful tools for screening catalytic materials; however, errors in their input parameters can lead to significant uncertainty in model predictions of catalyst performance. Here, we investigate the impact of linear scaling and Brønsted-Evans-Polanyi relation parametric uncertainty on microkinetic predictions of programmable-catalyst performance. Two case studies are considered: a generic A-to-B prototype reaction and the oxygen evolution reaction (OER). The results show that error-unaware models can accurately predict trends and, for the prototype reaction, values of optimal waveform parameters. The specific model parameters driving output uncertainty are identified via variance-based global sensitivity analysis. However, predictions of dynamic rate enhancement can decrease when uncertainty is propagated into the models. In both cases, we identify operating conditions where the programmable catalyst achieves a rate enhancement of at least one order of magnitude despite parametric uncertainty in the model, supporting programmable catalysis as a viable strategy for exceeding the Sabatier limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信