钪注入BiFeO3中应变-八面体-缺陷的相互作用

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongshen Lu, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Zhengyi Fu
{"title":"钪注入BiFeO3中应变-八面体-缺陷的相互作用","authors":"Yongshen Lu, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Zhengyi Fu","doi":"10.1016/j.jmst.2025.07.076","DOIUrl":null,"url":null,"abstract":"The escalating demand for high-performance nonvolatile memories, driven by the rapid evolution of artificial intelligence hardware, highlights the urgent need for breakthroughs in multiferroic thin-film engineering. While environmentally benign bismuth ferrite (BFO) thin films exhibit intrinsic ferroelectric-ferromagnetic duality, their performance suffers considerable degradation because of dimensional scaling effects and stochastic percolation of oxygen vacancies (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span>). Herein, we introduce a quantum-engineered implantation strategy utilizing scandium ions (Sc<sup>3+</sup>) as metastable interstitial dopants to systematically establish self-adaptive lattice-oxygen vacancy equilibria through quantum-confined interactions. Atomic-resolution electron microscopy and multiferroicity scaling behavior analysis reveal that precise Sc<sup>3+</sup> implantation (dose: 10<sup>15</sup> ions·cm<sup>−2</sup>) induces a quantum-confined strain field and vacancy dipole ordering, synergistically enhancing ferroelectric polarization to 158.6 μC/cm<sup>2</sup> while suppressing leakage currents to 10⁻<sup>8</sup> A/cm². Concurrently, strain-mediated magnetoelectric coupling elevates saturation magnetization to 0.82 emu/cm<sup>3</sup> via the modulation of the spin–lattice interaction, accompanied by electronic structure reconfiguration (bandgap narrowing Δ<em>E</em><sub>g</sub> = 2.09 eV). Crucially, Sc<sup>3+</sup>–<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;V&lt;/mi&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\"true\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span> pairs exhibit policy network-like characteristics, wherein each dopant autonomously optimizes local multiferroic responses through strain-oxygen chemical potential feedback loops. This study provides a Materials Genome blueprint for the design of multiferroic systems, bridging the gap between quantum-scale manipulation and device-level operational stability in oxide electronics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored strain–octahedral–defect interplay for giant multiferroicity in BiFeO3 via scandium implantation\",\"authors\":\"Yongshen Lu, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Zhengyi Fu\",\"doi\":\"10.1016/j.jmst.2025.07.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating demand for high-performance nonvolatile memories, driven by the rapid evolution of artificial intelligence hardware, highlights the urgent need for breakthroughs in multiferroic thin-film engineering. While environmentally benign bismuth ferrite (BFO) thin films exhibit intrinsic ferroelectric-ferromagnetic duality, their performance suffers considerable degradation because of dimensional scaling effects and stochastic percolation of oxygen vacancies (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span>). Herein, we introduce a quantum-engineered implantation strategy utilizing scandium ions (Sc<sup>3+</sup>) as metastable interstitial dopants to systematically establish self-adaptive lattice-oxygen vacancy equilibria through quantum-confined interactions. Atomic-resolution electron microscopy and multiferroicity scaling behavior analysis reveal that precise Sc<sup>3+</sup> implantation (dose: 10<sup>15</sup> ions·cm<sup>−2</sup>) induces a quantum-confined strain field and vacancy dipole ordering, synergistically enhancing ferroelectric polarization to 158.6 μC/cm<sup>2</sup> while suppressing leakage currents to 10⁻<sup>8</sup> A/cm². Concurrently, strain-mediated magnetoelectric coupling elevates saturation magnetization to 0.82 emu/cm<sup>3</sup> via the modulation of the spin–lattice interaction, accompanied by electronic structure reconfiguration (bandgap narrowing Δ<em>E</em><sub>g</sub> = 2.09 eV). Crucially, Sc<sup>3+</sup>–<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2022;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.043ex;\\\" viewbox=\\\"0 -747.2 1558.3 1196.3\\\" width=\\\"3.619ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-56\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(750,306)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2219\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,-335)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">V</mi><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><msubsup is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">V</mi><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">•</mo><mo is=\\\"true\\\">•</mo></mrow></msubsup></math></script></span> pairs exhibit policy network-like characteristics, wherein each dopant autonomously optimizes local multiferroic responses through strain-oxygen chemical potential feedback loops. This study provides a Materials Genome blueprint for the design of multiferroic systems, bridging the gap between quantum-scale manipulation and device-level operational stability in oxide electronics.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2025.07.076\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.07.076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在人工智能硬件快速发展的推动下,对高性能非易失性存储器的需求不断增长,凸显了多铁薄膜工程突破的迫切需要。虽然环境友好的铋铁氧体(BFO)薄膜具有固有的铁电-铁磁二象性,但由于尺寸尺度效应和氧空位(VO••VO••)的随机渗透,其性能会受到相当大的影响。在此,我们引入了一种量子工程注入策略,利用钪离子(Sc3+)作为亚稳的间隙掺杂剂,通过量子限制相互作用系统地建立自适应的晶格-氧空位平衡。原子分辨率电子显微镜和多铁性标度行为分析表明,精确的Sc3+注入(剂量:1015个离子·cm−2)诱导了一个量子受限应变场和空位偶极子有序,协同增强铁电极化到158.6 μC/cm2,同时抑制漏电流到10⁻8 a /cm2。同时,应变介导的磁电耦合通过调制自旋-晶格相互作用将饱和磁化强度提高到0.82 emu/cm3,伴随着电子结构重构(带隙缩小ΔEg = 2.09 eV)。关键是,Sc3+ -VO••VO••对表现出策略网络的特征,其中每种掺杂剂通过应变-氧化学势反馈回路自主优化局部多铁响应。这项研究为设计多铁系统提供了材料基因组蓝图,弥合了氧化物电子学中量子尺度操作和器件级操作稳定性之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailored strain–octahedral–defect interplay for giant multiferroicity in BiFeO3 via scandium implantation

Tailored strain–octahedral–defect interplay for giant multiferroicity in BiFeO3 via scandium implantation
The escalating demand for high-performance nonvolatile memories, driven by the rapid evolution of artificial intelligence hardware, highlights the urgent need for breakthroughs in multiferroic thin-film engineering. While environmentally benign bismuth ferrite (BFO) thin films exhibit intrinsic ferroelectric-ferromagnetic duality, their performance suffers considerable degradation because of dimensional scaling effects and stochastic percolation of oxygen vacancies (VO). Herein, we introduce a quantum-engineered implantation strategy utilizing scandium ions (Sc3+) as metastable interstitial dopants to systematically establish self-adaptive lattice-oxygen vacancy equilibria through quantum-confined interactions. Atomic-resolution electron microscopy and multiferroicity scaling behavior analysis reveal that precise Sc3+ implantation (dose: 1015 ions·cm−2) induces a quantum-confined strain field and vacancy dipole ordering, synergistically enhancing ferroelectric polarization to 158.6 μC/cm2 while suppressing leakage currents to 10⁻8 A/cm². Concurrently, strain-mediated magnetoelectric coupling elevates saturation magnetization to 0.82 emu/cm3 via the modulation of the spin–lattice interaction, accompanied by electronic structure reconfiguration (bandgap narrowing ΔEg = 2.09 eV). Crucially, Sc3+VO pairs exhibit policy network-like characteristics, wherein each dopant autonomously optimizes local multiferroic responses through strain-oxygen chemical potential feedback loops. This study provides a Materials Genome blueprint for the design of multiferroic systems, bridging the gap between quantum-scale manipulation and device-level operational stability in oxide electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信