{"title":"中微子质量和FIMP暗物质的Z4对称反跷跷板模型","authors":"Ziye Wang, Yakefu Reyimuaji, Nijiati Yalikun","doi":"10.1103/3tvj-qmld","DOIUrl":null,"url":null,"abstract":"A theoretical framework based on a spontaneously broken Z</a:mi>4</a:mn></a:msub></a:math> symmetry is proposed to simultaneously explain neutrino mass generation via the inverse seesaw mechanism and dark matter (DM) production through a freeze-in scenario. This work extends the standard model with right-handed neutrinos <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>N</c:mi><c:mi>i</c:mi></c:msub></c:math>, additional fermions <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>χ</e:mi><e:mi>i</e:mi></e:msub></e:math>, and a complex scalar <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>S</g:mi></g:math>. An unbroken <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>Z</i:mi><i:mn>2</i:mn></i:msub></i:math> subgroup ensures the stability of the DM candidate, whose relic abundance is dominantly produced via decay and scattering processes involving heavy singlet fermions. Phenomenological analyses show that this relatively minimal construction accommodates the observed neutrino oscillation parameters, consistent with the latest global fit data. Furthermore, the model successfully reproduces the observed DM relic density within the parameter space relevant to neutrino phenomenology, establishing a connection between neutrino properties and DM production.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z4 symmetric inverse seesaw model for neutrino masses and FIMP dark matter\",\"authors\":\"Ziye Wang, Yakefu Reyimuaji, Nijiati Yalikun\",\"doi\":\"10.1103/3tvj-qmld\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical framework based on a spontaneously broken Z</a:mi>4</a:mn></a:msub></a:math> symmetry is proposed to simultaneously explain neutrino mass generation via the inverse seesaw mechanism and dark matter (DM) production through a freeze-in scenario. This work extends the standard model with right-handed neutrinos <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>N</c:mi><c:mi>i</c:mi></c:msub></c:math>, additional fermions <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:msub><e:mi>χ</e:mi><e:mi>i</e:mi></e:msub></e:math>, and a complex scalar <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>S</g:mi></g:math>. An unbroken <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:msub><i:mi>Z</i:mi><i:mn>2</i:mn></i:msub></i:math> subgroup ensures the stability of the DM candidate, whose relic abundance is dominantly produced via decay and scattering processes involving heavy singlet fermions. Phenomenological analyses show that this relatively minimal construction accommodates the observed neutrino oscillation parameters, consistent with the latest global fit data. Furthermore, the model successfully reproduces the observed DM relic density within the parameter space relevant to neutrino phenomenology, establishing a connection between neutrino properties and DM production.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/3tvj-qmld\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/3tvj-qmld","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Z4 symmetric inverse seesaw model for neutrino masses and FIMP dark matter
A theoretical framework based on a spontaneously broken Z4 symmetry is proposed to simultaneously explain neutrino mass generation via the inverse seesaw mechanism and dark matter (DM) production through a freeze-in scenario. This work extends the standard model with right-handed neutrinos Ni, additional fermions χi, and a complex scalar S. An unbroken Z2 subgroup ensures the stability of the DM candidate, whose relic abundance is dominantly produced via decay and scattering processes involving heavy singlet fermions. Phenomenological analyses show that this relatively minimal construction accommodates the observed neutrino oscillation parameters, consistent with the latest global fit data. Furthermore, the model successfully reproduces the observed DM relic density within the parameter space relevant to neutrino phenomenology, establishing a connection between neutrino properties and DM production.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.