用于应变响应增强和稳定硅阳极的熵驱动双通道耗散粘合剂

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lan Zhao, Fengcai Lin, Haijun Li, Lingling Qian, Yingshan Shi, Zhiyi Cao, Xuan Yang, Biao Huang, Beili Lu, Hanyang Liu, Jianhua Lv, Xinda You, Lirong Tang
{"title":"用于应变响应增强和稳定硅阳极的熵驱动双通道耗散粘合剂","authors":"Lan Zhao, Fengcai Lin, Haijun Li, Lingling Qian, Yingshan Shi, Zhiyi Cao, Xuan Yang, Biao Huang, Beili Lu, Hanyang Liu, Jianhua Lv, Xinda You, Lirong Tang","doi":"10.1002/adfm.202515461","DOIUrl":null,"url":null,"abstract":"Dissipative smart binders hold great potential for flexible electronics and energy storage, but achieving synergistic regulation between energy dissipation and structural reinforcement remains challenging, particularly in balancing high strength, tunable toughness, and multifunctional integration. Here, a dissipative smart binder with a dual-channel responsive mechanism is developed to enable dynamic regulation of energy dissipation and rigidity enhancement through the synergistic effects of slip relaxation and conformational locking. Centered on Fe<sup>2</sup>⁺/Fe<sup>3</sup>⁺ dynamic coordination, the binder incorporates control via the intricate and rigid rosin architecture and a hierarchy of distinct bonding mechanisms, thereby enhancing its capacity for both rapid energy dissipation and strain-triggered reinforcement. Sodium alginate serves as a continuous phase framework, reinforced by phosphorylated cellulose nanocrystals, conformation-locking segments of acrylic acid rosin, and a multivalent coordination network that enables this strain-triggered state transformation. The binder exhibits a soft-to-rigid transition with a strain-rate-sensitive hardening effect, increasing modulus up to 98 000 times and fracture energy from 104.51 to 272.34 MJ m<sup>−3</sup>. Applied in silicon anodes, it maintains 2476.5 mA h g<sup>−1</sup> after 100 cycles at 0.2C, with ionic conductivity reaching 25.240 mS cm<sup>−1</sup>, an eightfold increase over the unmodified system. The composite network effectively mitigates structural degradation, binder fatigue, and interfacial instability caused by silicon volume expansion.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"42 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy–Driven Dual–Channel Dissipative Binder for Strain–Responsive Reinforcement and Stable Silicon Anodes\",\"authors\":\"Lan Zhao, Fengcai Lin, Haijun Li, Lingling Qian, Yingshan Shi, Zhiyi Cao, Xuan Yang, Biao Huang, Beili Lu, Hanyang Liu, Jianhua Lv, Xinda You, Lirong Tang\",\"doi\":\"10.1002/adfm.202515461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dissipative smart binders hold great potential for flexible electronics and energy storage, but achieving synergistic regulation between energy dissipation and structural reinforcement remains challenging, particularly in balancing high strength, tunable toughness, and multifunctional integration. Here, a dissipative smart binder with a dual-channel responsive mechanism is developed to enable dynamic regulation of energy dissipation and rigidity enhancement through the synergistic effects of slip relaxation and conformational locking. Centered on Fe<sup>2</sup>⁺/Fe<sup>3</sup>⁺ dynamic coordination, the binder incorporates control via the intricate and rigid rosin architecture and a hierarchy of distinct bonding mechanisms, thereby enhancing its capacity for both rapid energy dissipation and strain-triggered reinforcement. Sodium alginate serves as a continuous phase framework, reinforced by phosphorylated cellulose nanocrystals, conformation-locking segments of acrylic acid rosin, and a multivalent coordination network that enables this strain-triggered state transformation. The binder exhibits a soft-to-rigid transition with a strain-rate-sensitive hardening effect, increasing modulus up to 98 000 times and fracture energy from 104.51 to 272.34 MJ m<sup>−3</sup>. Applied in silicon anodes, it maintains 2476.5 mA h g<sup>−1</sup> after 100 cycles at 0.2C, with ionic conductivity reaching 25.240 mS cm<sup>−1</sup>, an eightfold increase over the unmodified system. The composite network effectively mitigates structural degradation, binder fatigue, and interfacial instability caused by silicon volume expansion.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202515461\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202515461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

耗散型智能粘结剂在柔性电子和能量存储方面具有巨大潜力,但在能量耗散和结构加固之间实现协同调节仍然具有挑战性,特别是在平衡高强度、可调韧性和多功能集成方面。本研究开发了一种具有双通道响应机制的耗散智能粘结剂,通过滑移松弛和构象锁定的协同效应,实现能量耗散和刚度增强的动态调节。以Fe2 + /Fe3 +动态协调为中心,该粘合剂通过复杂而刚性的松香结构和不同的结合机制层次进行控制,从而增强了其快速耗能和应变触发增强的能力。海藻酸钠作为一个连续的相框架,由磷酸化的纤维素纳米晶体、丙烯酸松香的构象锁定片段和多价配位网络加强,使这种菌株触发的状态转变成为可能。黏结剂表现出从软到硬的转变,具有应变率敏感的硬化效应,模量增加了98000倍,断裂能从104.51增加到272.34 MJ m−3。应用于硅阳极,在0.2C下循环100次后保持2476.5 mA h g - 1,离子电导率达到25.240 mS cm - 1,比未修饰的系统增加了8倍。复合网络有效地减轻了硅体积膨胀引起的结构退化、粘结剂疲劳和界面不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Entropy–Driven Dual–Channel Dissipative Binder for Strain–Responsive Reinforcement and Stable Silicon Anodes

Entropy–Driven Dual–Channel Dissipative Binder for Strain–Responsive Reinforcement and Stable Silicon Anodes
Dissipative smart binders hold great potential for flexible electronics and energy storage, but achieving synergistic regulation between energy dissipation and structural reinforcement remains challenging, particularly in balancing high strength, tunable toughness, and multifunctional integration. Here, a dissipative smart binder with a dual-channel responsive mechanism is developed to enable dynamic regulation of energy dissipation and rigidity enhancement through the synergistic effects of slip relaxation and conformational locking. Centered on Fe2⁺/Fe3⁺ dynamic coordination, the binder incorporates control via the intricate and rigid rosin architecture and a hierarchy of distinct bonding mechanisms, thereby enhancing its capacity for both rapid energy dissipation and strain-triggered reinforcement. Sodium alginate serves as a continuous phase framework, reinforced by phosphorylated cellulose nanocrystals, conformation-locking segments of acrylic acid rosin, and a multivalent coordination network that enables this strain-triggered state transformation. The binder exhibits a soft-to-rigid transition with a strain-rate-sensitive hardening effect, increasing modulus up to 98 000 times and fracture energy from 104.51 to 272.34 MJ m−3. Applied in silicon anodes, it maintains 2476.5 mA h g−1 after 100 cycles at 0.2C, with ionic conductivity reaching 25.240 mS cm−1, an eightfold increase over the unmodified system. The composite network effectively mitigates structural degradation, binder fatigue, and interfacial instability caused by silicon volume expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信