微滴驱动金属-有机骨架催化剂的合成。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaowei Song,Juldeh Jallow,Chanbasha Basheer,Rashed S Bakdash,Abdullah Alaliwi,Abdulaziz A Alzamil,Richard N Zare
{"title":"微滴驱动金属-有机骨架催化剂的合成。","authors":"Xiaowei Song,Juldeh Jallow,Chanbasha Basheer,Rashed S Bakdash,Abdullah Alaliwi,Abdulaziz A Alzamil,Richard N Zare","doi":"10.1002/anie.202515006","DOIUrl":null,"url":null,"abstract":"We report a room-temperature synthesis of copper-based metal-organic frameworks (Cu-MOFs) using microdroplet chemistry, offering a fast and energy-efficient alternative to conventional solvothermal methods that typically require high temperatures, extended reaction times, and suffer from inhomogeneous mixing. The unique microdroplet environment significantly accelerates reaction kinetics, enabling the formation of uniform octahedral crystals within 1 h at ambient conditions. Comprehensive characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), high-resolution mass spectrometry (HRMS), Brunauer-Emmett-Teller (BET) surface area analysis, and thermogravimetric analysis (TGA) confirmed the high crystallinity, thermal stability, and porous structure of the Cu-MOFs. Compared to conventionally prepared Cu-MOFs, those synthesized via microdroplet chemistry exhibit comparable surface areas with improved exposure of active sites. As a demonstration of their catalytic potential, the MOFs were employed in a microbubble-assisted air-water interface system for nitrogen fixation under ambient conditions. The system effectively converted atmospheric nitrogen into nitrate, showcasing the practical utility of these materials in green chemical transformations. This study shows that microdroplet and microbubble technologies are powerful and sustainable platforms for MOF synthesis and catalytic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"88 1","pages":"e202515006"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microdroplet-Driven Synthesis of a Metal-Organic Framework Catalyst.\",\"authors\":\"Xiaowei Song,Juldeh Jallow,Chanbasha Basheer,Rashed S Bakdash,Abdullah Alaliwi,Abdulaziz A Alzamil,Richard N Zare\",\"doi\":\"10.1002/anie.202515006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a room-temperature synthesis of copper-based metal-organic frameworks (Cu-MOFs) using microdroplet chemistry, offering a fast and energy-efficient alternative to conventional solvothermal methods that typically require high temperatures, extended reaction times, and suffer from inhomogeneous mixing. The unique microdroplet environment significantly accelerates reaction kinetics, enabling the formation of uniform octahedral crystals within 1 h at ambient conditions. Comprehensive characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), high-resolution mass spectrometry (HRMS), Brunauer-Emmett-Teller (BET) surface area analysis, and thermogravimetric analysis (TGA) confirmed the high crystallinity, thermal stability, and porous structure of the Cu-MOFs. Compared to conventionally prepared Cu-MOFs, those synthesized via microdroplet chemistry exhibit comparable surface areas with improved exposure of active sites. As a demonstration of their catalytic potential, the MOFs were employed in a microbubble-assisted air-water interface system for nitrogen fixation under ambient conditions. The system effectively converted atmospheric nitrogen into nitrate, showcasing the practical utility of these materials in green chemical transformations. This study shows that microdroplet and microbubble technologies are powerful and sustainable platforms for MOF synthesis and catalytic applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"88 1\",\"pages\":\"e202515006\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种利用微滴化学在室温下合成铜基金属有机框架(Cu-MOFs)的方法,为传统的溶剂热方法提供了一种快速、节能的替代方法,传统的溶剂热方法通常需要高温、延长反应时间,并且存在不均匀混合的问题。独特的微滴环境显著加速了反应动力学,使其在环境条件下1小时内形成均匀的八面体晶体。通过x射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、高分辨率质谱(HRMS)、brunauer - emmet - teller (BET)表面积分析和热重分析(TGA)等综合表征证实了cu - mof的高结晶度、热稳定性和多孔结构。与传统制备的cu - mof相比,通过微滴化学合成的cu - mof具有相当的表面积,并且改善了活性位点的暴露。为了证明mof的催化潜力,在环境条件下将其应用于微泡辅助空气-水界面系统中进行固氮。该系统有效地将大气中的氮转化为硝酸盐,展示了这些材料在绿色化学转化中的实际用途。该研究表明,微滴和微泡技术是MOF合成和催化应用的强大且可持续的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microdroplet-Driven Synthesis of a Metal-Organic Framework Catalyst.
We report a room-temperature synthesis of copper-based metal-organic frameworks (Cu-MOFs) using microdroplet chemistry, offering a fast and energy-efficient alternative to conventional solvothermal methods that typically require high temperatures, extended reaction times, and suffer from inhomogeneous mixing. The unique microdroplet environment significantly accelerates reaction kinetics, enabling the formation of uniform octahedral crystals within 1 h at ambient conditions. Comprehensive characterization by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), high-resolution mass spectrometry (HRMS), Brunauer-Emmett-Teller (BET) surface area analysis, and thermogravimetric analysis (TGA) confirmed the high crystallinity, thermal stability, and porous structure of the Cu-MOFs. Compared to conventionally prepared Cu-MOFs, those synthesized via microdroplet chemistry exhibit comparable surface areas with improved exposure of active sites. As a demonstration of their catalytic potential, the MOFs were employed in a microbubble-assisted air-water interface system for nitrogen fixation under ambient conditions. The system effectively converted atmospheric nitrogen into nitrate, showcasing the practical utility of these materials in green chemical transformations. This study shows that microdroplet and microbubble technologies are powerful and sustainable platforms for MOF synthesis and catalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信